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Abstract

The solution process of problems on unbounded domains usually require a domain truncation and
therefore artificial boundary conditions, leading to techniques such as perfectly matched layers
(PML) or absorbing boundary conditions (ABC), see [1, 2] for references. To be concrete, taking
Ω ⊂ R2 as an infinite strip (sometimes called a waveguide), then the original problem (or its
discretization)

Lu = f in Ω,

Bu = g on ∂Ω,
(or L∞u = f∞)

is truncated to

Lv = f in Ωtrunc

Btruncv = g on ∂Ωtrunc,
(or Lv = f)

where Ω̂ is the region in which we want to approximately compute u, ΩABC is a the bounded
region with which we replace the (originally unbounded) Ω\Ω̂ and Ωtrunc = Ω̂ ∪ ΩABC is bounded.
We have Btrunc = B wherever ∂Ωtrunc coincide with ∂Ω and usually introduce a simple boundary
condition along the remainder of ∂Ωtrunc, e.g., Dirichlet. Naturally, this is also reflected at the
discrete level where the infinite matrix L∞ is replaced by a finite matrix L, which is identical with
L∞ for the unknowns of the interior of Ωtrunc and those where ∂Ωtrunc coincide with ∂Ω. Domain
truncation is also important in domain decomposition methods where a given computational do-
main is decomposed into many smaller subdomains, and then subdomain solutions are computed
independently in parallel. The solutions on the smaller subdomains can naturally be interpreted
as solutions on truncated domains, and thus it is of interest to use ABC or PML techniques at the
interfaces between the subdomains. The classical Schwarz method uses Dirichlet transmission con-
ditions between subdomains and an overlap to achieve convergence [2]. The overlap coupled with
the Dirichlet boundary condition can be thus interpreted as a specific ABC once the unknowns of
the overlap are folded onto the interface – an idea that inspired number of iterative solvers, see [1]
and the references therein.
An interesting question of a discrete optimized ABC/PML for problems with finite difference grids
has been discussed in [3] for L being the Laplacian and then extended to the Helmholtz equation
in [4] – in both of these, the authors answer the question:

Having ΩABC fixed, what is the best mesh for finite difference discretization
(possibly staggered) so that v|

Ω̂
≈ u|

Ω̂
?

Here, we are interested in the complementary question:

If the discretization method is fixed, what is the effect of prolonging the trunca-
tion domain ΩABC on v|

Ω̂
≈ u|

Ω̂
?
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We also start with L being the Laplacian and, after discertization, start with the known corre-
spondence of the discrete ABC and the Schur complement, see [1, Remark 14 and below]. We use
its eigendecomposition, which is closely linked with its Fourier analysis (sometimes also called the
frequency domain analysis), and show that in the spectral domain the ABC is naturally represented
as the i-th convergent of a particular continued fraction, namely

ABC(z) ∼ 2 + z − 1

2 + z − 1

2+z−
...

2+z− 1
2+z

,

where the fraction has “i levels” and z corresponds to the Fourier frequency. After relating i to the
prolongation of ΩABC, as posed in our question, we also show that the infinite continued fraction
(i.e., without stopping after i levels) gives a natural representation of the optimal ABC for the
infinite problem Lu = f , hence obtaining the first part of the answer:

Prolonging ΩABC corresponds, in the spectral domain, to approximation of the
optimal ABC in the sense of truncation of its continued fraction expansion.

Thanks to the deep results connecting continued fractions and approximation theory, namely Padé
approximation (see [6]), we expand on this by concluding

In the spectral domain, the ABC approximates the optimal one in the sense of
Padé approximation about the right endpoint of the spectrum of L. Prolonging
(shrinking) ΩABC corresponds to increasing (decreasing) the order of the Padé
approximant.

This suggest that for i not too large the approximation quality is rather poor around the left
endpoint of the spectrum of L, showing us some room for improvement. One such improvement
corresponds to considering different boundary conditions where we can, i.e., along what we above
called “the remainder of ∂Ωtrunc”, e.g., Robin boundary condition. Using the free parameters well,
e.g., the Robin parameter, we can decrease the approximation error. Another, different, to improve
on the above ABC is to change the Padé expansion point, hence introducing a new ABC/PML
technique. Notice that in such case, we still obtain a different PML to these in [3, 4] as we do
not change the discretization. Both of these improvements can be optimized so as to decrease
the approximation error v|Ω̂ ≈ u|Ω̂. We demonstrate all of our results also numerically and then
comment on possible generalizations. Some of these results have been published in [5].
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