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Abstract

In this talk we present a detailed analysis of block smoothers and propose new aggregation-based
strategies in multigrid methods for structured linear systems [3].
Multigrid methods are well-known for their efficiency in solving large linear systems, especially
when the coefficient matrices exhibit a large (multilevel block) structure [2, 7, 8]. These methods
are widely used in various scientific and engineering applications, including the discretization of
partial differential equations (PDEs), image processing, and approximation problems.
The key to developing effective multigrid methods lies in the careful selection of the grid transfer op-
erator P and the iterative methods that serve as pre/post smoothers within the multigrid iteration.
In previous works [2, 8], a comprehensive convergence analysis for two-grid and V-cycle methods
applied to scalar Toeplitz and circulant systems was developed. Specifically, the convergence re-
quirements for P and smoothers were formulated elegantly using conditions on the (scalar-valued)
function f associated with the structured coefficient matrix. Extending this symbol-based analysis
to block systems introduces challenges such as the non-commutativity of matrix-valued functions
and the need for suitable grid transfer operators to manage coarse-grid corrections.
Scalar smoothers can be defined by carefully selecting the relaxation parameter based on the matrix-
valued function f, mimicking the approach used for scalar-valued functions. However, we show that,
as the block dimension d increases, block smoothers become more appropriate because they align
more naturally with the system’s block structure.
One of the main goals of this talk is to provide an in-depth analysis of block smoothers, which
are more effective in handling block-structured systems. Specifically, we introduce a relaxed block
Jacobi method and derive general conditions for the smoothing parameter ω that ensure conver-
gence. This method proves more efficient than scalar smoothers, both in terms of solving time
and set-up time. From our comparison of scalar and block Jacobi smoothers, we demonstrate that
the block Jacobi method consistently outperforms its scalar counterpart in terms of convergence
rate and computational efficiency, particularly for systems with large block dimensions. Moreover,
we show that the general conditions on smoothing parameters can be calculated with negligible
computational cost in some practical applications.
Regarding the choice of grid transfer operators, a rigorous convergence analysis for the two-grid
method (TGM), further extended to the V-cycle, was derived in [6]. The latter demonstrates that
certain classical grid transfer operators, such as the geometric projection and standard bisection
operators, meet the necessary conditions for convergence in many practical cases. The grid transfer
operator in this context is written as

P = An(p)(K ⊗ Id),

where K is an n × k matrix that reduces the dimension of the problem by selecting specific rows,
and An(p) is a structured matrix analogous to the original problem. A key aspect of such grid
transfer operators is that they preserve the block structure at coarser levels, and the proof of the
approximation convergence property is based on validating further commutativity conditions on
the matrix-valued symbol p.
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However, many known grid transfer operators were not covered by the previous theory. To address
this, new conditions were obtained in [4], expressing the projector’s approximation property in
terms of the eigenvector associated with the ill-conditioned subspace, thereby broadening the class
of valid operators. Specifically, convergence results in the block-structured setting were derived
by exploiting block-symbol analysis. If f(θ) is a trigonometric polynomial with exactly one zero
eigenvalue at θ0 and is positive definite in [0, 2π)\{θ0}, it can be diagonalized as

f(θ) = Q(θ)D(θ)Q(θ)H ,

where Q(θ) is the matrix of eigenvectors and D(θ) is the diagonal matrix of eigenvalues. We
denote by qȷ̄(θ) the normalized eigenvector associated with the zero eigenvalue λȷ̄(f(θ0)) = 0.
Under certain assumptions, sufficient conditions for the linear convergence of the TGM involve
choosing p such that the function p(θ)Hp(θ) + p(θ + π)Hp(θ + π) is positive definite for all θ ∈
[0, 2π) and specific limit conditions as θ approaches θ0 are satisfied. These requirements can be
simplified in specific applications, and the V-cycle convergence conditions are based on these results.
An important aspect of the strategy outlined above is that the grid transfer operator maintains
the block structure at coarser levels. While this is theoretically convenient for proving V-cycle
convergence, it introduces computational challenges, as the block structure remains, and the matrix-
valued function can be difficult to analyze.
The second aim of this talk is to present a new symbol-based multigrid method with an aggregation-
based approach, which reduces the system to a scalar form at coarser levels. In particular, from the
decomposition of the matrix-valued trigonometric polynomial f , we propose a grid transfer operator
of the form

P = In ⊗ qȷ̄(θ0).

This approach offers significant computational advantages, especially for large-scale systems [1]. At
the coarse level, the coefficient matrix simplifies, resulting in a scalar-valued function

f̃(θ) = qHȷ̄ (θ0)f(θ)qȷ̄(θ0),

which maintains some properties of the original problem. Indeed, f̃ vanishes at θ0 (and only at
θ0), and with a zero of order smaller than or equal to that of the original λȷ̄(f), ensuring that the
conditioning of the problem does not worsen.
We derive the convergence and optimality of the TGM by combining the approximation property
verified by P and the findings on the block smoothers. We also extend the TGM analysis to
the V-cycle, where the properties of the scalar-valued symbol at the coarse level are crucial in
determining the convergence rate. In particular, we show that V-cycle convergence can be achieved
by combining the TGM results with an analysis of the scalar coarse-level symbol. This allows us
to formulate clear conditions for convergence and optimality, even in complex block settings.
From a computational perspective, aggregation-based methods provide substantial savings while
maintaining convergence, particularly when combined with over-relaxation strategies. As proposed
by Braess [5], over-relaxation of the coarse-grid correction significantly enhances multigrid perfor-
mance, and we show the effectiveness of this strategy when combined with our symbol-based grid
transfer operators. This corresponds to performing an over-relaxation with a parameter α > 1 when
computing the interpolation of the error, αPy. Consequently, we present a strategy to select the
optimal pair (ω, α) to minimize the spectral radius of the TGM iteration matrix, thereby improving
results.
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To validate our theoretical findings, we conduct numerical experiments using the proposed approach
both as a standalone method and as a preconditioner for Krylov iterative methods. The tested large-
scale block circulant, block Toeplitz-like, and Generalized Locally Toeplitz (GLT) linear systems
stem from discretizations using Qd Lagrangian FEM approximation of second-order differential
problems and B-spline discretization with non-maximal regularity. In addition to confirming our
theoretical results, these examples demonstrate how the conditions outlined for block smoother
convergence simplify in practical scenarios.
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