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Abstract

In [2], we presented an adaptive estimate for the energy norm of the error in the conjugate gradient
(CG) method. Using the notation from [2, Alg. 1], A-norm of the error between the exact solution
of Ax = b and the CG approximation xℓ given in the ℓth step is estimated as

∥x− xℓ∥2A ≈ ∆CG
ℓ:k :=

k∑
j=ℓ

αj∥rj∥2, (1)

where ∥v∥2A ≡ vTAv denotes the squared A-norm. Integrating the estimate into the existing CG
code is straightforward and simple; see [4, Alg. 1]. At the current kth CG iteration, we get an
estimate with the delay d = k − ℓ for previous approximation xℓ. The delay d is set adaptively by
[4, Alg. 2]. From the construction, ∆CG

ℓ:k yields a lower bound

∥x− xℓ∥2A ≥ ∆CG
ℓ:k .

In [4] and in the prospective talk at Householder Symposium XXII we consider algorithms for
solving least-squares problems with a general, possibly rectangular matrix

min
x∈Rm

∥b−Ax∥, b ∈ Rn, A ∈ Rn×m, n ≥ m,

that are mathematically based on applying CG to a system with a positive (semi-)definite ma-
trix ATA. We discuss CGLS based on Hestenes–Stiefel-like implementation as well as LSQR based
on Golub–Kahan bidiagonalization, and both unpreconditioned and preconditioned variants. We
show that the adaptive estimate used in CG can be extended for these algorithms to estimate the
monotonically decreasing quantity

∥x− xℓ∥2ATA = ∥rℓ∥2 − ∥r∥2, (2)

where x = A†b is the minimal norm solution, xℓ is the approximation in the ℓth step of CGLS or
LSQR, rℓ = b − Axℓ, and r = b − b|R(A) with b|R(A) being the orthogonal projection of b onto the
range of A.
For example, the estimate

∥x− xℓ∥2ATA ≈ ∆LSQR
ℓ:k :=

k∑
j=k

ϕ2
j+1,

for estimating the quantity of interest (2) in LSQR algorithm is given, analogously to ∆CG
ℓ:k , as a

sum of scalar terms, which are available in the algorithm; here we use the notation from [4, Alg. 4].
Moreover, ∆LSQR

ℓ:k provides a lower bound on ∥x− xℓ∥2ATA
.

We emphasize the applicability of the estimates (bounds) for the computations in finite-precision
arithmetic. Their derivation is only based on local orthogonality, which is typically well preserved
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during computations; see [5]. We demonstrate that the estimates remain computationally inexpen-
sive to evaluate and are numerically reliable in finite-precision arithmetic under mild assumptions.
These qualities make the estimates highly suitable for stopping the iterations.
One can consider the stopping criterion requiring that

∥rℓ∥2 − ∥r∥2

∥r∥2
≤ ε (3)

for a prescribed tolerance ε. It is clear from (2), that after ∥rℓ∥ ≈ ∥r∥, further iterations bring no
significant decrease of the residual norm ∥rℓ∥. Using (2), the criterion (3) is equivalent to

∥x− xℓ∥2ATA ≤ ε

1− ε
∥rℓ∥2,

where the estimate for ∥x− xℓ∥2ATA
can be used.

Another stopping criterion based on a backward error can also be considered when applying our
estimates. This criterion aims to identify the iteration at which the computed approximation can
be interpreted as the least-squares solution to a perturbed system

min
x

∥(b+ f)− (A+ E)x∥,

with
min
f,E,ζ

{ζ such that ∥E∥ ≤ ζ∥A∥, ∥f∥ ≤ ζ∥b∥} ≤ ε.

This backward error for stopping LSQR iterations has been studied, e.g., in [3, 1], and can be
approximated using the asymptotically tight bound

∥x− xℓ∥2ATA

∥A∥∥xℓ∥+ ∥b∥
;

see [1].
Finally, we present a range of numerical experiments to confirm the robustness and very satisfactory
behaviour of the estimates for CGLS, LSQR, and also their preconditioned variants. We hope that
these estimate will prove to be useful in practical computations. They allow us to approximate,
with the prescribed relative accuracy, the quantity of interest at a negligible cost.
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