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Abstract

Let A= {Ay,...,Aq} be a commuting family of n x n complex matrices, i.e., A;A; = A, A; for all
1 < j,k < d. Then there exists a unitary matrix U such that all matrices U*A1U, ..., U*AyU are
upper triangular and the n d-tuples containing the diagonal elements of U*A U, ..., U*A4U are
called the joint eigenvalues of A. For every joint eigenvalue A = (A1,...,Ag) of A there exists a
nonzero common eigenvector x, such that A;x = \jx fori =1,...,d.

The task of numerical computation of joint eigenvalues for a commuting family arises, e.g., in solvers
for multiparameter eigenvalue problems and systems of multivariate polynomials. We propose and
analyze a simple approach, summarized in Algorithm 1, that computes eigenvalues as one-sided or
two-sided Rayleigh quotients from eigenvectors of a random linear combination

A(p) = p1 Ay + poAo + -+ + pgAqg, (1)

where 1 = [p1 --- pg)? is a random vector from the uniform distribution on the unit sphere in C.

We show that Algorithm 1, in particular the use of two-sided Rayleigh quotients, accurately com-
putes well-conditioned semisimple joint eigenvalues with high probability. It still works satisfacto-
rily in the presence of defective eigenvalues. Experiments show that the method can be efficiently
used in solvers for multiparameter eigenvalue problems and roots of systems of multivariate poly-
nomials.

Algorithm 1 Randomized Joint Eigenvalue Approximation
Input: A nearly commuting family A = {A1,..., Ag}, opt € {RQ1,RQ2}.
Output: Approximations of joint eigenvalues of A.

1: Draw p € C¢ from the uniform distribution on the unit sphere.
2: Compute A(p) = u1 Ay + -+ + pglq.
Compute invertible matrices X,Y such that the columns of X have norm 1, Y*X =1,
and Y*A(p)X is diagonal.
if opt = RQ1 then
return )\ggl = (xf Az, ..., 2] Agzy), i=1,...,n.
else if opt = RQ2 then

return }‘gp = (yf A1z, ..., yfAgzg), i=1,...,n.

end if

@

The idea of using a random linear combination like (1) is not new. For example, in [1, 4] the unitary
matrix U from the Schur decomposition A(u) = U*RU is used to transform all matrices from A to
block upper triangular form. Using the Schur decomposition, however, requires clustering to group
multiple eigenvalues together, and this is a numerically subtle task. On the other hand, Algorithm
1 does not require clustering and in practice often leads to equally good or even better results for,
e.g., multiparameter eigenvalue problems [5] and multivariate root finding problems.

For a significantly simpler situation of commuting Hermitian matrices, where a unitary matrix
exists that jointly diagonalizes all matrices, randomized methods based on (1) have recently been
analyzed in [2], establishing favorable robustness and stability properties.



An important source of joint eigenvalue problems are eigenvector-based methods for solving systems
of multivariate polynomial equations. If we are looking for roots of a set of polynomials

pi(xl,...,xd):(], i:1,...,m, (2)

such that the solution consists of finitely many points, then a common feature of these methods is
that they construct so called multiplication matrices My, , ..., M;, that commute and their joint
eigenvalues are the roots (z1,...,x4) of (2). Many techniques that use symbolic and/or numerical
computation, including Groébner basis, various resultants, and Macaulay matrices, are used to
construct the multiplication matrices, see, e.g., [6].

Another source are multiparameter eigenvalue problems. A d-parameter version has the form

Ajox; = MAjx; + -+ ANgAigxs, 1=1,...,d, (3)
where A;; is an n; x n; complex matrix and z; # 0 for ¢ = 1,...,d. When (3) is satisfied,
a d-tuple A = (Aq,...,\g) € C? is called an eigenvalue and z; ® --- ® x4 is a corresponding

eigenvector. Generically, a multiparameter eigenvalue problem (3) has N = nj ---ng eigenvalues.
The problem (3) is related to a system of d generalized eigenvalue problems

Aiz:)\iAoz, ’izl,...,d,

with z =21 ® - -+ ® x4 and the N x N matrices (that are called operator determinants)

A - A Ay o A A Ay o A
Ag=|: o, A= : : : S, i=1,...,d.
Aa -+ Add|g An - Agi-1 Awo Adivr o0 Addlg
If Ag is invertible, then the matrices I'; := AalAi fori=1,...,d commute. If NV is not too large,
then a standard approach to solve (3) is to explicitly compute the matrices I'1,...,I'; and then

solve the joint eigenvalue problem.
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