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Abstract

Let A = {A1, . . . , Ad} be a commuting family of n× n complex matrices, i.e., AjAk = AkAj for all
1 ≤ j, k ≤ d. Then there exists a unitary matrix U such that all matrices U∗A1U, . . . , U

∗AdU are
upper triangular and the n d-tuples containing the diagonal elements of U∗A1U, . . . , U

∗AdU are
called the joint eigenvalues of A. For every joint eigenvalue λ = (λ1, . . . , λd) of A there exists a
nonzero common eigenvector x, such that Aix = λix for i = 1, . . . , d.
The task of numerical computation of joint eigenvalues for a commuting family arises, e.g., in solvers
for multiparameter eigenvalue problems and systems of multivariate polynomials. We propose and
analyze a simple approach, summarized in Algorithm 1, that computes eigenvalues as one-sided or
two-sided Rayleigh quotients from eigenvectors of a random linear combination

A(µ) = µ1A1 + µ2A2 + · · ·+ µdAd, (1)

where µ = [µ1 · · · µd]
T is a random vector from the uniform distribution on the unit sphere in Cd.

We show that Algorithm 1, in particular the use of two-sided Rayleigh quotients, accurately com-
putes well-conditioned semisimple joint eigenvalues with high probability. It still works satisfacto-
rily in the presence of defective eigenvalues. Experiments show that the method can be efficiently
used in solvers for multiparameter eigenvalue problems and roots of systems of multivariate poly-
nomials.

Algorithm 1 Randomized Joint Eigenvalue Approximation
Input: A nearly commuting family A = {A1, . . . , Ad}, opt ∈ {RQ1,RQ2}.
Output: Approximations of joint eigenvalues of A.

1: Draw µ ∈ Cd from the uniform distribution on the unit sphere.
2: Compute A(µ) = µ1A1 + · · ·+ µdAd.
3: Compute invertible matrices X,Y such that the columns of X have norm 1, Y ∗X = I,

and Y ∗A(µ)X is diagonal.
4: if opt = RQ1 then
5: return λ

(i)
RQ1 = (x∗iA1xi, . . . , x

∗
iAdxi), i = 1, . . . , n.

6: else if opt = RQ2 then
7: return λ

(i)
RQ2 = (y∗iA1xi, . . . , y

∗
iAdxi), i = 1, . . . , n.

8: end if

The idea of using a random linear combination like (1) is not new. For example, in [1, 4] the unitary
matrix U from the Schur decomposition A(µ) = U∗RU is used to transform all matrices from A to
block upper triangular form. Using the Schur decomposition, however, requires clustering to group
multiple eigenvalues together, and this is a numerically subtle task. On the other hand, Algorithm
1 does not require clustering and in practice often leads to equally good or even better results for,
e.g., multiparameter eigenvalue problems [5] and multivariate root finding problems.
For a significantly simpler situation of commuting Hermitian matrices, where a unitary matrix
exists that jointly diagonalizes all matrices, randomized methods based on (1) have recently been
analyzed in [2], establishing favorable robustness and stability properties.
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An important source of joint eigenvalue problems are eigenvector-based methods for solving systems
of multivariate polynomial equations. If we are looking for roots of a set of polynomials

pi(x1, . . . , xd) = 0, i = 1, . . . ,m, (2)
such that the solution consists of finitely many points, then a common feature of these methods is
that they construct so called multiplication matrices Mx1 , . . . ,Mxd

that commute and their joint
eigenvalues are the roots (x1, . . . , xd) of (2). Many techniques that use symbolic and/or numerical
computation, including Gröbner basis, various resultants, and Macaulay matrices, are used to
construct the multiplication matrices, see, e.g., [6].
Another source are multiparameter eigenvalue problems. A d-parameter version has the form

Ai0xi = λ1Ai1xi + · · ·+ λdAidxi, i = 1, . . . , d, (3)
where Aij is an ni × ni complex matrix and xi ̸= 0 for i = 1, . . . , d. When (3) is satisfied,
a d-tuple λ = (λ1, . . . , λd) ∈ Cd is called an eigenvalue and x1 ⊗ · · · ⊗ xd is a corresponding
eigenvector. Generically, a multiparameter eigenvalue problem (3) has N = n1 · · ·nd eigenvalues.
The problem (3) is related to a system of d generalized eigenvalue problems

∆iz = λi∆0z, i = 1, . . . , d,

with z = x1 ⊗ · · · ⊗ xd and the N ×N matrices (that are called operator determinants)

∆0 =

∣∣∣∣∣∣∣
A11 · · · A1d

...
...

Ad1 · · · Add

∣∣∣∣∣∣∣
⊗

, ∆i =

∣∣∣∣∣∣∣
A11 · · · A1,i−1 A10 A1,i+1 · · · A1d

...
...

...
...

...
Ad1 · · · Ad,i−1 Ad0 Ad,i+1 · · · Add

∣∣∣∣∣∣∣
⊗

, i = 1, . . . , d.

If ∆0 is invertible, then the matrices Γi := ∆−1
0 ∆i for i = 1, . . . , d commute. If N is not too large,

then a standard approach to solve (3) is to explicitly compute the matrices Γ1, . . . ,Γd and then
solve the joint eigenvalue problem.
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