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Abstract

Tensors are multidimensional arrays that generalize the vector and matrix concepts. Formally-
speaking, an N -way or Nth-order tensor is an element of the tensor product of N vector spaces. A
scalar, vector, and matrix correspond to tensors of order zero, one, and two, respectively. One of
the key challenges in working with high-order tensors is called the “curse of dimensionality”, where
tensors with large dimensionality can have an extremely large number of components, making it
difficult to analyze and extract meaningful information from them. Tensor networks are powerful
techniques for addressing this challenge. A tensor network [14] employs a collection of small ten-
sors, where some or all of their dimensions are contracted according to some pattern, to implicitly
represent a high-dimensional tensor. Tensor networks have been originally used in computational
quantum physics [23, 22, 24, 21, 20, 19], where low-rank tensor networks can be used efficiently
and accurately to represent quantum states and operators based on the area law. Recently, ten-
sor networks are also widely used in simulating quantum computers [11, 25, 18, 17] and neural
networks [13].
Tensor network contraction explicitly evaluates the single tensor represented by a given tensor
network. When each tensor in the network is dense, tensor network contraction is typically achieved
through a sequence of pairwise tensor contractions. This sequence, known as the contraction path,
is determined by a topological sort of the underlying contraction tree. The contraction tree is a
rooted binary tree that depicts the complete contraction of the tensor network. In this tree, the
leaves correspond to the tensors in the network, and each internal vertex represents the tensor
contraction of its two children.
Tensor network contraction has found diverse applications in different fields of research. For in-
stance, in quantum computing, each quantum algorithm can be viewed as a tensor network con-
traction, making this method a useful tool for simulating quantum computers [11, 25, 18, 17]. In
statistical physics, tensor network contraction has been used to evaluate the classical partition
function of physical models defined on specific graphs [8]. Tensor network contraction has also
been used for counting satisfying assignments of constraint satisfaction problems (#CSPs) [7]. In
this approach, an arbitrary #CSP formula is transformed into a tensor network, where its full
contraction yields the number of satisfying assignments of that formula.
Contracting tensor networks with arbitrary structure is #P-hard in the general case [3, 16, 1],
even when the network represents a scalar. The reason for this is that during the contraction
of general tensor networks, intermediate tensors with high orders or large dimension sizes can
emerge, leading to a substantial computational cost for precise contraction. Nonetheless, in some
applications such as many-body physics, it has been observed that tensor networks built on top of
specific models can often be approximately contracted with satisfactory accuracy, without incurring
exponential costs [15]. A common approach is to represent or approximate large intermediate
tensors as (low-rank) tensor networks, which reduces the memory usage and computational overhead
for downstream contractions. Common tensor networks used for approximation include the matrix
product states (MPS) and the tree tensor networks (TTN) [20].
Efficient approximate contraction algorithms based on MPSs have been proposed for tensor network
contractions defined on regular structures such as the Projected Entangled Pair States (PEPS)
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[21, 22, 10, 9], which has a 2D lattice structure. However, these methods are not easily extendable
to other general tensor network structures.
Recent works have proposed approximation algorithms for contracting tensor networks with more
general graph structures. For example, [6] approximates each intermediate tensor produced during
the contraction path as a binary tree tensor network, while [17] approximates each intermediate
tensor as an MPS. In [2], each intermediate tensor is also approximated as an MPS, but the
system is designed for the specific unbalanced contraction paths and only targets the approximate
contraction of tensor networks defined on planar graphs. Another approach proposed in [5] is to
perform low-rank approximation on the remaining tensor network after contractions, rather than
on the intermediate tensors. The experimental results demonstrate that this framework is more
efficient and accurate than [17].
We introduce two approximate tensor network contraction algorithms. First of all, we present a
swap-based algorithm named Contracting Arbitrary Tensor Network with Global Ordering (CATN-
GO) that can efficiently approximate the contraction of arbitrary tensor networks. Our algorithm
builds on the approach outlined in [17], which approximates each intermediate tensor generated
during the contraction as an MPS with a bounded rank. When contracting two tensors, the
algorithm merges two MPSs, with swaps of adjacent dimensions in the MPS being the bottleneck
for complexity.
For a tensor network defined on G = (V,E), we prove that the minimum number of swaps required
during contraction is lower bounded by the least number of edge crossings in any vertex linear
ordering of the tensor network graph, denoted by minσ cr(G, σ). A vertex linear ordering σ :
V → {1, . . . , |V |} assigns each vertex a unique number, and two edges with adjacent vertex orders
(i, j), (k, l) cross if i < k < j < l. Hence, we reduce the problem of finding the minimum number of
swaps to the problem of finding a vertex linear ordering that minimizes the number of edge crossings.
In addition, for a fixed vertex ordering σV , the number of swaps used in CATN-GO equals the
lower bound, cr(G, σV ), implying optimality for this metric. Furthermore, CATN-GO includes a
dynamic programming algorithm to select the contraction tree under a given vertex ordering. This
algorithm aims to minimize the overall computational cost, under the assumption that all MPSs
have a uniform rank. The uniform rank assumption makes the problem equivalent to minimizing
the total length of the MPSs generated during the contractions and has a time complexity of
O(|V |3|E|). Experimental results demonstrate that when contracting tensor networks defined on
3D lattices using the Ising model, our algorithm is more efficient than the algorithm proposed in
[17] in terms of speed, and achieves a 5.9X speed-up while maintaining the same accuracy.
We propose another approximate tensor network contraction method named Partitioned Contract.
Like similar methods proposed in [6, 17, 2], our algorithm approximates each intermediate tensor
as a binary tree tensor network. Compared to previous works, the proposed algorithm has the
flexibility to incorporate a larger portion of the environment when performing low-rank approxi-
mations. Here, the environment refers to the remaining set of tensors in the network, and low-rank
approximations with larger environments can generally provide higher accuracy. In addition, our
proposed algorithm includes a cost-efficient density matrix algorithm [12, 4] for approximating a
tensor network with a general graph structure into a tree structure. The computational cost of
the density matrix algorithm is asymptotically upper-bounded by that of the standard algorithm
that uses canonicalization (the process of orthogonalizing all tensors except one in the tenosr net-
work). Experimental results indicate that the proposed algorithm outperforms both algorithms
proposed in [17] and [2] when considering tensor networks defined on lattices using the Ising model.
Specifically, our approach achieves a 9.2X speed-up while maintaining the same level of accuracy.
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