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Abstract

Overview: We adapt the asymptotically fastest-known algorithm for diagonalizing arbitrary ma-
trix pencils – as well as the related phenomenon of pseudospectral shattering – to the definite
generalized eigenvalue problem. Put simply, we obtain significant efficiency gains by preserving
and exploiting structure, in this case symmetry. In doing so, our work provides a general road map
for tailoring fast diagonalization to structured problems.
Recent work in randomized numerical linear algebra produced the first sub-O(n3) algorithms for
diagonalizing any matrix A or matrix pencil (A,B) [3, 5]. The key insight of this work is the
phenomenon of pseudospectral shattering, where a random perturbation to a matrix, or pencil, has
a regularizing effect on its (pseudo)spectrum. A result of smoothed analysis [11], shattering is char-
acterized by a minimum eigenvalue gap and minimally well-conditioned eigenvectors. Moreover,
it implies success for fast divide-and-conquer eigensolvers, which can diagonalize a perturbed ma-
trix/pencil with essentially optimal complexity (that is, complexity equal to matrix multiplication
up to log factors). The name “pseudospectral shattering” is derived from the fact that a ran-
dom grid covering the ϵ-pseudospectra of the perturbed problem separates its disjoint components,
and the eigenvalues they contain, into separate grid boxes for ϵ sufficiently small – i.e., inverse
polynomial in n.
Pseudospectral shattering suggests a simple, high-level approach to eigenvalue problems: apply a
random perturbation and run a fast version of divide-and-conquer, where the shattering grid can
be used to reliably divide the spectrum at each step. The result is an accurate diagonalization, in
the backward-error sense, provided the initial perturbation is small. Prior to [3], which introduced
pseudospectral shattering in the context of the standard eigenvalue problem, no way of leveraging
divide-and-conquer’s natural parallelization to obtain fast diagonalizations of arbitrary matrices (or
pencils) was known. Importantly, [5] established that this approach can be implemented without
relying on matrix inversion, thereby promoting stability while also minimizing associated commu-
nication costs (following Ballard et al. [2]).
These randomized eigensolvers, which we refer to collectively as pseudospectral divide-and-conquer,
are fully general. In particular, both [3] and [5] allow matrices to be arbitrary and apply Ginibre
perturbations to obtain a guarantee of pseudospectral shattering. This begs the question: how can
we adapt these algorithms to better handle symmetric or sparse inputs, for which dense Gaussian
perturbations are structure-destroying? Going further: if we can achieve pseudospectral shattering
while maintaining structure – i.e., via structured perturbations – how can we translate that into
efficiency gains in divide-and-conquer?
We answer these question for the definite generalized eigenvalue problem, which corresponds to
pencils (A,B) in which A and B are Hermitian and the Crawford number γ(A,B) satisfies

γ(A,B) = min
||x||2=1

|xH(A+ iB)x| > 0. (1)

Pencils arising in scientific computing and machine learning are often definite [7, 6]. We note
two important sub-problems in particular: (1) the Hermitian eigenvalue problem, corresponding
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to B = I, and (2) the generalized symmetric definite eigenvalue problem, in which B is positive
definite.
As inputs to divide-and-conquer, definite pencils exhibit a number of properties that can be lever-
aged for improved efficiency. Most notably, the eigenvalues of a definite pencil (A,B) are real
(and in fact any ϵ-pseudospectrum that considers only Hermitian perturbations to A and B will be
constrained to the real axis for ϵ sufficiently small). Additionally, definite pencils are regular and
satisfy stronger eigenvalue/eigenvector perturbation bounds than the generic case (see e.g., [12]).
Finally, where an arbitrary pencil (A,B) is diagonalized by a pair of eigenvector matrices – if it is
diagonalizable at all – a definite pencil can always be diagonalized by a single matrix. That is, for
any definite pencil (A,B) there exists invertible X such that

(XHAX,XHBX) = (ΛA,ΛB) (2)

for ΛA and ΛB diagonal.
Motivated by these observations, we devise a version of pseudospectral divide-and-conquer that
pursues efficiency by maintaining definiteness through both the initial random perturbation and
the subsequent recursive procedure. The main ingredients are the following:

1. We prove shattering for a symmetric pseudospectrum

Λsym
ϵ (A,B) =

{
z :

(A+ E)u = z(B + F )u for u ̸= 0 and
E,F Hermitian with

√
||E||22 + ||F ||22 ≤ ϵ

}
(3)

under random perturbations that are either diagonal or sampled from the Gaussian Unitary
Ensemble (GUE). The diagonal case builds on work of Minami [8] and implies a remark-
ably simple path to structured shattering for (Hermitian) banded matrices. The GUE case,
meanwhile, leverages recent results of Aizenman et al. [1]. In both settings, the key insight
is a bound on the probability that a perturbed Hermitian matrix has a certain number of
eigenvalues in a given interval of the real axis.

2. Next, we demonstrate that (inverse-free) iterative methods for computing spectral projectors
of (A,B) – i.e., projectors onto deflating subspaces corresponding to sets of eigenvalues,
which are the key to the recursive splits of divide-and-conquer – can be optimized for fast
convergence on problems with real eigenvalues [4]. This is the primary advantage we gain
access to by preserving definiteness (and itself generalizes work of Nakatsukasa et al. [10]).

Combining points one and two yields a specialized version of pseudospectral divide-and-conquer that
is significantly more efficient on definite inputs. Ongoing work seeks high performance implemen-
tations of both standard pseudospectral divide-and-conquer and this specialization. Accordingly,
and in parallel with broader efforts to deploy randomized algorithms in numerical linear algebra
[9], our work represents an important step towards bringing fast, randomized diagonalization to
practice.
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