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Abstract
Consider the following problem: Given a function g : Cn → Cn find x ∈ Cn such that

x = g(x), or alternatively f(x) = 0, with f(x) := g(x)− x. (1)

Obviously, a simplest method of choice to solve this problem is the fixed-point iteration

x(k+1) = g(x(k)), for all k ∈ N. (2)

Unfortunately, its convergence is often extremely slow. The problem of slow (or no) convergence
of a sequence of iterates has been extensively studied by researchers since the early 20th century.
Aitken’s delta-squared process was introduced in 1926 [1] for nonlinear sequences, and since then,
people have been investigating various extrapolation and convergence acceleration methods with
Shanks transformation [2] providing one of the most important and fundamental ideas. In the
following, we will consider two mixing acceleration methods: the Anderson Acceleration [3, 4] (also
referred to as Pulay mixing [5, 6] in computational chemistry) and the Conjugate Residual algo-
rithm with OPtimal trial vectors (CROP) [7, 8]. Anderson Acceleration method has a long history
in mathematics literature, which goes back to Anderson’s 1965 seminal paper [3]. Over the years,
the method has been successfully applied to many challenging problems [9, 10, 11]. An indepen-
dent line of research on accelerating convergence of nonlinear solvers established by physicists and
chemists has led to developments of techniques such as Pulay mixing [5, 6], also known as the
Direct Inversion of the Iterative Subspace (DIIS) algorithm, which is instrumental in accelerat-
ing the Self-Consistent Field (SCF) iteration method in electronic structure calculations [12]. It
is well-known that Anderson Acceleration method has connections with the Generalized Minimal
Residual Method (GMRES) algorithm [13, Section 6.5] and can be categorized as a multisecant
method [14, 15, 16, 17]. The first convergence theory for Anderson Acceleration, under the as-
sumption of a contraction mapping, appears in [18]. The convergence of Anderson(1), a topic
of particular interest to many researchers, is discussed separately in [19, 20]. The acceleration
properties of Anderson Acceleration are theoretically justified in [21, 22]. For detailed and more
comprehensive presentation of history, theoretical and practical results on the acceleration methods
and their applications we refer readers to [23, 24] and references therein.
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faster convergence than a simple fixed-point iteration by using the past information to generate
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new iterates as linear combinations of previous m
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with given relaxation (or damping) parameters β(k) ∈ R+ and mixing coefficients α
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Note that in the case of β(k) = 1 a general formulation (4) introduced in the original work of
Anderson [3, 4] reduces to the Pulay mixing [5, 6], i.e.,
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The CROP method, introduced in [7], is a generalization of the Conjugate Residual (CR) method [13,
Section 6.8], which is a well-known iterative algorithm for solving linear systems. Analogously,
we consider iterates x
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Let us assume we have carried k steps of the CROP algorithm, i.e., we have the subspace of optimal
vectors span{x(1)C , . . . , x

(k)
C } at hand. From the residual vector f (k)

C , we can introduce a preliminary
improvement of the current iterate x
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Now, since (7) is equivalent to f
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The estimated residual (error) f (k+1)
C corresponding to the iterate x
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combination of the estimated residuals of each component in (8) with the same coefficients, i.e.,
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Note that in general, unlike for the Anderson Acceleration method, f (k+1)
C ̸= f(x
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C . Minimizing

the norm of the residual (error) defined in (9) results in a constrained least-squares problem
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Anderson Acceleration method is a well-established method that allows to speed up or encourage
convergence of fixed-point iterations and it has been successfully used in a variety of applications.
In recent years, the Conjugate Residual with OPtimal trial vectors (CROP) algorithm was intro-
duced and shown to have a better performance than the classical Anderson Acceleration with less
storage needed. In this work we aim to delve into the intricate connections between the classical
Anderson Acceleration method and the CROP algorithm. Our objectives include a comprehensive
study of their convergence properties, explaining the underlying relationships, and substantiating
our findings through some numerical examples. Through this exploration, we contribute valuable
insights that can enhance the understanding and application of acceleration methods in practical
computations, as well as the developments of new and more efficient acceleration schemes. In par-
ticular, we will discuss the connection between the CROP algorithm and some other well-known
methods, analyze its equivalence with Anderson Acceleration method and investigate convergence
for linear and nonlinear problems. We will present a unified Anderson-type framework and show
the equivalence between Anderson Acceleration method and the CROP algorithm. Moreover, we
will compare the CROP algorithm with some Krylov subspace methods for linear problems and
with multisecant methods in the general case. We will illustrate the connection between the CROP
algorithm and Anderson Acceleration method and explain the CROP-Anderson variant. Further-
more, we will show situations in which CROP and CROP-Anderson algorithms work better than
Anderson Acceleration method. We will discuss the convergence results for CROP and CROP-
Anderson algorithms for linear and nonlinear problems, and extend CROP and CROP-Anderson
algorithms to rCROP and rCROP-Anderson, respectively, by incorporating real residuals to make
them work better for nonlinear problems.
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