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Abstract

1 MinAres

Suppose A ∈ Rn×n is a large symmetric matrix for which matrix-vector products Av can be
computed efficiently for any vector v ∈ Rn. We present a Krylov subspace method called MinAres
for computing a solution to the following problems:

Symmetric linear systems: Ax = b, (1)
Symmetric least-squares problems: min ∥Ax− b∥, (2)
Symmetric nullspace problems: Ar = 0, (3)
Symmetric eigenvalue problems: Ar = λr, (4)

Singular value problems for rectangular B:
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If A is nonsingular, problems (1)–(2) have a unique solution x⋆. When A is singular, if b is not in
the range of A then (1) has no solution; otherwise, (1)–(2) have an infinite number of solutions,
and we seek the unique x⋆ that solves the problem

min 1
2∥x∥

2 s.t. A2x = Ab. (6)

Let xk be an approximation to x⋆ with residual rk = b − Axk. If A were unsymmetric or rect-
angular, applicable solvers for (1)–(2) would be Lsqr [10] and Lsmr [3], which reduce ∥rk∥ and
∥ATrk∥ respectively within the kth Krylov subspace Kk(A

TA,AT b) generated by the Golub-Kahan
bidiagonalization on (A, b) [4].
For (1)–(5), our algorithm MinAres solves (6) by reducing ∥Ark∥ within the kth Krylov subspace
Kk(A, b) generated by the symmetric Lanczos process on (A, b) [6]. Thus when A is symmetric,
MinAres minimizes the same quantity ∥Ark∥ as Lsmr, but in different (more effective) subspaces,
and it requires only one matrix-vector product Av per iteration, whereas Lsmr would need two.
Qualitatively, certain residual norms decrease smoothly for these iterative methods, but other
norms are more erratic as they approach zero. It is ideal if stopping criteria involve the smooth
quantities. For Lsqr and Lsmr on general (possibly rectangular) systems, ∥rk∥ decreases smoothly
for both methods. We observe that while Lsqr is always ahead by construction, it is never by very
much. Thus on consistent systems Ax = b, Lsqr may terminate slightly sooner than Lsmr. On
inconsistent systems Ax ≈ b, the comparison is more striking. ∥ATrk∥ decreases erratically for
Lsqr but smoothly for Lsmr, and there is usually a significance difference between the two. Thus
Lsmr may terminate significantly sooner [3].
Similarly for Minres [9] and MinAres, ∥rk∥ decreases smoothly for both methods, and on consis-
tent symmetric systems Ax = b, Minres may have a small advantage. On inconsistent symmetric
systems Ax ≈ b, ∥Ark∥ decreases erratically for Minres and its variant Minres-qlp [2] but
smoothly for MinAres, and there is usually a significant difference between them. Thus MinAres
may terminate sooner.
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MinAres completes the family of Krylov methods based on the symmetric Lanczos process. As it
minimizes ∥Ark∥ (which always converges to zero), MinAres can be applied safely to any symmetric
system.
On consistent symmetric systems, MinAres is a relevant alternative to Minres and Minres-qlp
because it converges in a similar number of iterations if the stopping condition is based on ∥rk∥,
and much sooner if the stopping condition is based on ∥Ark∥. On singular inconsistent symmetric
systems, MinAres outperforms Minres-qlp and Lsmr, and should be the preferred method.
Furthermore, a lifting step [7] can be applied to move from the final iterate to the minimum-length
solution (pseudoinverse) at negligible cost.

2 CAr

We introduce CAr, a new conjugate direction method similar to Cg and Cr (the conjugate gradient
and conjugate residual methods of Hestenes and Stiefel [5, 11] for solving symmetric positive definite
(SPD) systems Ax = b). Each of these methods generates a sequence of approximate solutions xk
in the Krylov subspaces Kk(A, b) by minimizing a quadratic function f(x):

fCg(x) =
1
2x

TAx− bTx, fCr(x) =
1
2∥Ax− b∥2, fCAr(x) =

1
2∥A

2x−Ab∥2.

CAr is to MinAres as Cr is to Minres. For SPD A, CAr is mathematically equivalent to
MinAres, and both methods exhibit monotonic decrease in ∥Ark∥, ∥rk∥, ∥xk−x⋆∥, and ∥xk−x⋆∥A.
The name CAr reflects its property of generating successive A-residuals that are conjugate with
respect to A. Designed to minimize ∥Ark∥ in Kk(A, b), CAr complements the family of conjugate
direction methods Cg and Cr for SPD systems.

Algorithm 1 Cg
Require: A, b, ϵ > 0

k = 0, x0 = 0
r0 = b, p0 = r0
q0 = Ap0

ρ0 = rT0r0
while ∥rk∥ > ϵ do

αk = ρk/p
T
kqk

xk+1 = xk + αkpk
rk+1 = rk − αkqk

ρk+1 = rTk+1rk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = Apk+1

k ← k + 1
end while

Algorithm 2 Cr
Require: A, b, ϵ > 0
k = 0, x0 = 0
r0 = b, p0 = r0
s0 = Ar0, q0 = s0

ρ0 = rT0s0
while ∥rk∥ > ϵ do

αk = ρk/∥qk∥2
xk+1 = xk + αkpk
rk+1 = rk − αkqk
sk+1 = Ark+1

ρk+1 = rTk+1sk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = sk+1 + βkqk

k ← k + 1
end while

Algorithm 3 CAr
Require: A, b, ϵ > 0

k = 0, x0 = 0
r0 = b, p0 = r0
s0 = Ar0, q0 = s0
t0 = As0, u0 = t0
ρ0 = sT0t0
while ∥rk∥ > ϵ do

αk = ρk/∥uk∥2
xk+1 = xk + αkpk
rk+1 = rk − αkqk
sk+1 = sk − αkuk
tk+1 = Ask+1

ρk+1 = sTk+1tk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = sk+1 + βkqk
uk+1 = tk+1 + βkuk
k ← k + 1

end while
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3 Krylov.jl

The algorithms MinAres and CAr have been implemented in Julia [1] as part of the package
Krylov.jl [8], which provides a suite of Krylov and block-Krylov methods. Leveraging Julia’s flexi-
bility and multiple dispatch capabilities, our implementations are compatible with all floating-point
systems supported by the language, including complex numbers. These methods are optimized for
both CPU and GPU architectures, ensuring high performance across a wide range of computational
platforms. Additionally, our implementations support preconditioners, enhancing convergence and
robustness across various problem classes.
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