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Abstract

Sequences of structured matrices of increasing size arise in many scientific applications and espe-
cially in the numerical discretization of linear differential problems; for example by using Finite
Differences (FD), Finite Elements (FE), Finite Volumes (FV), Discontinuous Galerkin (DG), Iso-
greometric Analysis (IgA). The eigenvalues λj(An) of matrices An, belonging to such a sequence
{An}n, can often be approximated by a regular expansion:

λj(An) =

α∑
k=0

ck(θj,n)h
k + Ej,n,α, j = 1, . . . , n θj,n =

jπ

n+ 1
, (1)

where ck : [−π, π] → C (c0 is called the spectral symbol and ck, k > 0 are called higher order
symbols) and the errors Ej,n,α = O(hα+1).
Hence, if we know these functions ck(θ), or approximate them since they are often not known
analytically, we can accurately (and very fast) approximate some (or all) of the eigenvalues of any
matrix An simply by evaluating (1).
It was previously shown (under appropriate assumptions, [4, 5]) [1, 7, 8, 9, 10] that for Hermitian
sequences {An}n, where c0 is known, that we can approximate ck(θj,n0), k = 1, . . . , α at specified
grid points θj,n0 using so-called matrix-less methods. The name is derived from the fact that
the spectrum for any matrix An in the sequence {An}n can be approximated by (1) without ever
constructing the matrix; only the spectrum of a few small matrices have to be computed. That is, we
have equality in (1), up to machine precision, for some chosen n = n0 and α. These approximations
ck(θj,n0) can then be used for interpolation-extrapolation to any grid θj,n (for any n) to approximate
λj(An).
In the current presentation, mainly inspired by [3], but also [6, 11], we extend the previous algo-
rithms with two important features:

1. The function c0 is not needed as an input and is approximated; this is necessary for most non-
Hermitian matrix sequences, but also for discretizations of problems with variable coefficients.

2. The algorithm can handle discretizations of variable coefficient problems, e.g., (a(x)u′(x))′.

We here briefly present these two new features.

1. No knowledge of c0 necessary.

We begin by presenting two simple but representative pure Toeplitz matrix sequences; one Hermi-
tian {Tn(f1)}n and one non-Hermitian {Tn(f2)}n.

f1(θ)=6−8 cos(θ)+2 cos(2θ) f2(θ)=−eiθ+3−3e−iθ+e−2iθ

Tn(f1) =



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 6 −4
1 −4 6

 Tn(f2)=



3 −3 1
−1 3 −3 1

−1 3 −3 1

. . . . . . . . . . . .
−1 3 −3 1

−1 3 −3
−1 3
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For matrices in the Hermitian sequence {Tn(f1)}n, we have that the eigenvalues can be approxi-
mated by λj(Tn(f1)) ≈ c0(θj,n) = f1(θj,n) where θj,n = jπ/(n+1); the spectral symbol c0 is known
and equal to f1.
For matrices in the non-Hermitian sequence {Tn(f2)}n, we have that λj(Tn(f1)) ̸≈ f1(θj,n), we only
know that the eigenvalues lie in the convex hull of the complex valued function f2; the spectral
symbol c0 is not equal to f2. For most non-Hermitian matrix sequences the c0 is not known
analytically, and the new matrix-less method presented in [3, 11] does not require it to be know.
However, the matrix-less method is more efficient and accurate if it is provided.

Remark 1 In the specific case of a non-Hermitian sequence {Tn(f2)}n presented above we do know
that the spectrum is real and the are many viable c0, e.g. c0(θ) = sin3(θ)/(sin(θ/3) sin2(2θ/3));
see [13] for details.

For clarity we show a Julia implementation below on how to compute a matrix C = [ck(θj,n0)]
α+1,n0

k,j=1 ;
the inputs are n0 (≈ 100), α (≈ 3) and eigfun (a function that returns an ordered set of eigenvalues
λj(An) for a matrix An in {An}n).
function compute_C(n0, α, eigfun)

hs = zeros(α+1)
E = zeros(α+1,n0)
for kk = 1:α+1

nk = 2^(kk-1)*(n0+1)-1
jk = 2^(kk-1)*(1:n0)
hs[kk] = 1/(nk+1)
E[kk,:] = eigfun(nk)[jk]

end
V=[hs[ii]^(jj-1) for ii=1:α+1, jj=1:α+1]
return C=V\E

end

As is seen above, the algorithm relies on the computed spectrum for α+ 1 small matrices (of sizes
nk = 2k−1(n0 + 1) − 1, for k = 1, . . . , α + 1) to compute the elements of C. Subesequenly ck(θj,n)
is approximated, using interpolation-extrapolation, for arbitrary n, and used in (1) to approximate
λj(An).

Remark 2 If the spectral symbol is non-monotone (e.g., the stiffness matrix for IgA or f(θ) =
6−8 cos(θ)+4 cos(2θ)), the matrix-less method does typically not work in the non-monotone region,
since we usually do not know how to order the eigenvalues correctly.

2. Variable coefficients.

The spectral symbol f of the 2nd order FD discretization of (a(x)u′(x))′ is two-dimensional, namely
f(x, θ) = a(x)(2− 2 cos(θ)), where f : [0, 1]× [−π, π] → C; e.g., see [12].
In [3] we show that we can use the rearranged symbol [2] to compute an expansion (1) for dis-
cretizations of variable coefficient problems; i.e., we map the function f : [0, 1]× [−π, π] → R to a
rearranged symbol g : [0, 1] → R. In the new matrix-less method we have c0 = g.

Remark 3 We emphasize that the class of problems and matrices where this approach can be
applied is extensive, e.g.,

• multi-dimensional problems (size of matrices are then dn(n) and not n);
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• block matrices (e.g., FE/FV/DG);

• boundary conditions (c0 is the same, ck, k > 0 changes);

• h-dependence, space-time, sums/inverses/products;

• eigenvectors, singular values, generalized eigenvaklue problems;

and the approach could also be used to construct preconditioners and other solver techniques.

Apart from the two main points mentioned above, we will also discuss the current framework in
detail, possible extension and current developments, and possible applications.
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