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Abstract

We consider the solution of Sylvester-like variational inequality problem (SVIP), or linear matrix
equation complementarity problem (LMECP),

X ≥ 0, W = AX +XB − F ≥ 0 and ⟨X,W ⟩ = 0 (1)

where A ∈ Rm×m, B ∈ Rn×n and F ∈ Rm×n are large, sparse and structured discretization
matrices from partial differential operators, and X ∈ Rm×n is an unknown matrix. Here, ⟨X,W ⟩ =
Tr(X⊤W ) denotes the Frobenius inner product of two matrices, where X⊤ denotes the transpose
of the matrix X. If B = A⊤ and F is symmetric, we refer (1) as the Lyapunov-like linear matrix
equation complementarity problem. LMECP (1) generally arises from the finite discretization of
free boundary problems

v(x) ≥ g(x), w(x) = Lv(x)− f(x) ≥ 0 and (v(x)− g(x))w(x) = 0, (2)

where L is a given partial differential operator, and x ∈ D ⊆ Rn where D is a given domain with
boundary ∂D. The boundary condition of (2) is v(x) = g(x), x ∈ ∂D. Well known examples of free
boundary problems which can be written in the form (2) include American option pricing, porous
flow through dams, journal bearing lubrication, and elastic-plastic torsion, etc.
The vectorization of the LMECP (1) gives a mathematically equivalent linear complementarity
problem (LCP),

x ≥ 0, Ax− f ≥ 0 and x⊤(Ax− f) = 0, (3)

where A = In ⊗ A + B⊤ ⊗ Im ∈ Rmn×mn, f = vec(F ) ∈ Rmn×1 and x = vec(X) ∈ Rmn×1.
Here, the symbol ⊗ denotes the Kronecker product, and vec(·) denotes the vectorization operator
that converts a matrix into a vector by stacking the columns of the matrix on top of one another.
There are few numerical methods specifically designed for solving LMECP (1). Numerical methods
[6, 4, 2, 3, 7] for LCP (3) are generally not efficient for directly solving LMECP (1) due to the large
storage and complexity.
When the matrix A arises from the finite difference discretization of elliptic and parabolic partial
differential equations, it has structure that contains discretization components from different spa-
tial derivatives. Hence, the idea of alternating direction implicit (ADI) method is to split the finite
difference operator into separate operators, where each operator corresponds to the discretization
of one-dimensional spatial derivative term, so that the solution of discretized system can be trans-
formed to the alternative solutions of discretized sub-systems, which have a simpler structure that
requires fewer storage and computational costs. Let A = H + V be the matrix splitting of A,
where H = In ⊗ A and V = B⊤ ⊗ Im are respectively generated from discrete central difference
approximations to the particular one-dimensional equation. The Peaceman-Rachford ADI for LCP
(3) proposed by Lin and Cryer [5], and the matricization of ADI is described as follows.
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Algorithm 1 Peaceman-Rachford ADI for LMECP (1)
1: Input an initial guess X(0) and positive parameters rk
2: for k = 0, 1, 2, · · · until convergence do
3: Compute X(k+ 1

2) by solving the LCP subproblem{
W (k+ 1

2) = (A+ rkIm)X(k+ 1
2) +X(k)(B − rkIn)− F ≥ 0,

X(k+ 1
2) ≥ 0,

⟨
X(k+ 1

2),W (k+ 1
2)
⟩
= 0

(4)

4: Compute X(k+1) by solving the LCP subproblem{
W (k+1) = X(k+1)(B + rkIn) + (A− rkIm)X(k+ 1

2) − F ≥ 0,

X(k+1) ≥ 0,
⟨
W (k+1), X(k+1)

⟩
= 0.

(5)

5: end for

First, we propose a projection method for solving LMECP (1) by transforming the matrix equation
into LCP (3) with a vector form by means of the Kronecker product. We can reformulate LCP (3)
to an equivalent fixed-point equation

x = Proj(x− α[Ax− f ]),

where α > 0 is a scalar and Proj(·) = max(·, 0) denotes the orthogonal projection of vector or
matrix onto nonnegative cone. The matricization form gives

X = Proj(X − α(AX +XB − F )).

The gradient projection method for LMECP (1) is listed in Algorithm 2.

Algorithm 2 Projection method for LMECP (1)
1: Input an initial guess X(0) and positive parameter α
2: for k = 0, 1, 2, · · · until convergence do
3: Compute the residual R(k) = F −AX(k) −X(k)B
4: Compute

X(k+1) = Proj(X(k) + αR(k)). (6)

5: end for

Next, we discuss the convergence of Peaceman-Rachford ADI algorithm Algorithm 1 for the non-
Hermitian case. Unlike the symmetric case [1, 5], convergence properties for nonsymmetric sit-
uations cannot be established relying on the descent function of the quadratic form. Rather, as
with most iterative methods for solving systems of equations, the recursive relation between two
successive iterations will be utilized here. We first equivalently reformulate the LCP (1) as an
implicit fixed-point equation by variable transformation, and thus the ADI Algorithm 1 can be
correspondingly reformulated. Then the recursive error relations are constructed based on the
fixed-point equations. In addition, we consider the case when H and V are H+-matrices. We study
the convergence analysis of ADI algorithm for LMECP when HV = VH does not necessary hold.
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Denote

Lα(H) = |(αI +H+ rkI)
−1(αI −H− rkI)|,

Lβ(V) = |(βI + V + rkI)
−1(βI − V − rkI)|,

Kα(H,V) = 2|(αI +H+ rkI)
−1(V − rkI)|

Kβ(V,H) = 2|(βI + V + rkI)
−1(H− rkI)|

We have the following convergence theorem.

Theorem 1 Peaceman-Rachford ADI algorithm converges to the unique solution for any initial
vector if ρ(Lα(H)) < 1, ρ(Lβ(V)) < 1 and ρ(G) < 1, where ρ(·) denotes for the spectral radius of
the matrix and

G = [I − Lβ(V)]−1Kβ(V,H)[I − Lα(H)]−1Kα(H,V).

Consider the case when both H and V are H+-matrices. Let H = DH + BH and V = DV + BV ,
where DH and BH are the diagonal and off-diagonal parts of H, respectively, and DV and BV are
the diagonal and off-diagonal parts of V , respectively.

Theorem 2 Peaceman-Rachford ADI algorithm converges to the unique solution for any initial
vector, provided that H and V are H+-matrices and

(α− rk)I −DH ≥ 0 and DV − rkI ≤ 0,

(β − rk)I −DV ≥ 0 and DH − rkI ≤ 0,

In the following analysis, we assume that H and V are commute, that is to say, HV = VH. Remark
that for H and V arising from the finite difference discretization of a separable second-order elliptic
operator in a rectangular region, it can be shown that HV = VH holds.
Instead of taking the absolute value, we give another general convergence result based on the matrix
norm as follows. Denote

δα(H) = ∥(αI +H+ rkI)
−1(αI −H− rkI)∥,

δβ(V) = ∥(βI + V + rkI)
−1(βI − V − rkI)∥,

τα(H) = 2∥(αI +H+ rkI)
−1(V − rkI)∥,

τβ(V) = 2∥(βI + V + rkI)
−1(H− rkI)∥,

where ∥ · ∥ denotes for matrix norm.

Theorem 3 Peaceman-Rachford ADI algorithm converges to the unique solution for any initial
vector if

δα(H) < 1, δβ(V) < 1 and τα(H)τβ(V)
[1− δα(H)][1− δβ(V)]

< 1. (7)

Consider the case when both H and V are Hermitian positive definite matrices, and thus A = H+V
is Hermitian positive definite.
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Theorem 4 Suppose that H and V are Hermitian positive definite matrices, and H and V are
commute. If

rk ≥ 1

2
max(λ1 + λn, σ1 + σn),

then Peaceman-Rachford ADI algorithm for LCP converges to the unique solution for any initial
vector.

Finally, we present numerical experiments to show the convergence of proposed methods. We
consider the free boundary problem arises from fractional Black-Scholes American option pricing.
Assume that the asset prices S1 and S2 satisfy independent Lévy stochastic processes

Lu = −∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
− b1

[
−∞Dα

xu
]
− b2

[
−∞Dβ

yu
]
+ ru

where x = lnS1 and y = lnS2. Here, −∞Dα
xu and −∞Dβ

yu represents Caputo derivatives of u on x
and y, and α, β ∈ (1, 2).

a1 = −r − 1
2σ

α
1 sec

(
απ
2

)
, b1 = −1

2σ
α
1 sec

(
απ
2

)
a2 = −r − 1

2σ
β
2 sec

(
βπ
2

)
, b2 = −1

2σ
β
2 sec

(
βπ
2

)
σ1, σ2 are volatilities of asset prices. By finite difference discretization of the model, we apply the
projection method and ADI algorithm to solve the resulting LMECP, and the numerical results
further confirm our convergence analysis.
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