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Abstract

Many large-scale matrices arising in applications have a low numerical rank, and while the trun-
cated singular value decomposition gives a way to construct the best low-rank approximation with
respect to all unitarily invariant norms, this is often too expensive to compute. For this reason, dif-
ferent types of low-rank approximation strategies have been analyzed in the literature, for example,
approximations constructed from some rows and columns of the matrix. In practice, the strategy
for choosing rows and columns depends on the properties and the size of the matrix. Several de-
terministic and randomized strategies for selecting rows and columns for CUR approximation have
been developed; see, e.g., [1] for an overview.
This talk is concerned with the analysis of a randomized algorithm that selects suitable rows and
columns. The algorithm is based on an initial uniformly random selection of rows and columns,
followed by a refinement of this choice using a strong rank-revealing QR factorization. We show
bounds on the error of the corresponding low-rank approximation (more precisely, the CUR ap-
proximation error) when the matrix is a perturbation of a low-rank matrix that can be factorized
into the product of matrices with suitable incoherence and/or sparsity assumptions. The talk is
based on the paper [2].

The column subset selection problem

Let A ∈ Rn×n be the matrix we want to approximate (the discussion easily generalizes to rectangular
matrices). Let us denote by I, J ∈ {1, . . . , n}ℓ ordered index sets that correspond to rows and
columns of A, respectively, for some ℓ ≪ n, and let us denote by A(I, :) ∈ Rℓ×n and A(:, J) ∈ Rn×ℓ

the submatrices of A corresponding to the rows indexed by I and the columns indexed by J ,
respectively. An approximation of A using these rows and columns has the form

A ≈ A(:, J)MA(I, :),

for some matrix M ∈ Rℓ×ℓ. The choice of M that minimizes the low-rank approximation error
∥A−A(:, J)MA(I, :)∥F in the Frobenius norm is the orthogonal projection M = A(:, J)†AA(I, :)†,
where † denotes the Moore-Penrose pseudoinverse of a matrix. The resulting approximation is
usually called a “CUR approximation”.
The quality of the low-rank approximation, that is, the norm of the error matrix A−A(:, J)MA(I, :),
depends on the choice of rows and columns, and can be bounded, in the spectral norm, by

∥A−A(:, J)MA(I, :)∥2 ≤ ∥A−A(:, J)A(:, J)†A∥2 + ∥A−AA(I, :)†A(I, :)∥2, (1)

where the two terms on the right-hand-side are the column and row subset selection error, respec-
tively. For the remaining part of the talk, we focus on the problem of choosing columns, because
the rows can be selected in the same way and the error of the corresponding CUR approximation
is bounded as in (1).
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The proposed strategy

The simplest method to select columns is to choose some columns uniformly at random, which gives
good low-rank approximations in many cases of interest. In [3], it was shown that if A is a rank-k
matrix that admits a low-rank decomposition with incoherent factors, uniform sampling of rows
and columns allows to recover the matrix. Given a matrix X ∈ Rn×k with orthonormal columns,
the coherence of X is defined as

µ := n max
1≤i≤n
1≤j≤k

|xij |2,

and we say that X is µ-coherent. We say that a matrix is incoherent when µ is small. The concept
of incoherence informally means that the information about the matrix is “evenly spread out” across
all rows and columns.
The favorable property of uniform sampling can be extended to matrices that have low numerical
rank [4]. When the matrix A does not satisfy these incoherence assumptions, heuristic approaches
were considered, e.g., in [5, 6], where the idea is to refine the choice of the uniform sampled columns
using a rank-revealing decomposition. The algorithm that we consider is the following.

Algorithm 1 Proposed algorithm for column subset selection
Require: Matrix A, number of indices ℓ0, ℓa, ℓb
Ensure: Column index set J of cardinality ℓa + ℓb

1: Select ℓ0 rows of A uniformly at random (index set I0)
2: Select ℓa columns of A(I0, :) by sRRQR (index set Ja)
3: Select another ℓb columns of A uniformly at random (index set Jb)
4: Return the column index set J = (Ja, Jb)

Here, sRRQR denotes the strong rank-revealing QR factorization [7]. Informally, this is a partial
pivoted QR factorization that ensures that the first ℓa columns of A(I0, :) are a good approximation
of the range of the columns of A(I0, :). A rank-k sRRQR factorization for an m × n matrix
can be computed in time O(mnk log n), therefore the algorithm runs in time O(nℓ2 log n), where
ℓ = max{ℓ0, ℓa, ℓb}; in particular, the cost is sublinear with respect to the size of the matrix.

When is there hope for Algorithm 1 to work?

Let us look at a few illustrative examples to see when Algorithm 1 is likely to return a good column
set for low-rank approximation purposes. For example, if A is a matrix of all ones (and thus has
rank 1), uniformly sampling just one single column gives a vector that spans the range of A. The
singular vectors of A are as incoherent as they could possibly be. Now consider, instead, a matrix B
which is made of zeros except for one entry: in this case, neither uniform sampling nor Algorithm 1
will be able to correctly locate the only important column with high probability. The singular
vectors of B have coherence n, the highest possible value.
There is some interesting middle ground in which uniform sampling alone is not good enough, but
the combination with sRRQR gives us a good column subset. For example, consider the case of a
rank-2 matrix C ∈ Rn×n that has entries c1j = cj1 = 1 for 1 ≤ j ≤ n and zeros elsewhere. The row
set I0, chosen uniformly at random, will likely not include the first row. However, when looking at
the matrix C(I0, :), the sRRQR algorithm will select a set Ja containing the first column, plus some
other ℓa − 1 columns sampled uniformly at random. Now, the set J will contain the first column
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and at least another column; therefore, it is enough to span the range of C. We can decompose

C =
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= XZY T .

Note that, for each j = 1, 2, one between the j-th column of X and the j-th column of Y is
sparse and the other one is incoherent. This example suggests that when a matrix has a rank-k
decomposition XZY T (possibly, up to an additive error E), there is hope for Algorithm 1 to work
when, for each i = 1, . . . , k, one between the i-th columns of X and of Y is sparse, and the other
is incoherent.

Analysis of column quality

Our analysis considers the case in which A has rank exactly k and the case in which A is a
small perturbation of the exact case. For simplicity, we state our results in the perturbed case,
with slightly simplified assumptions, and we omit explicit constants; the precise results are in our
paper [2].

Assumptions. We assume that A admits an approximate rank-k factorization A = XZY T +E,
for some X ∈ Rn×k and Y ∈ Rn×k, where X and Y have orthonormal columns, Z ∈ Rk×k is
diagonal, and the corresponding pairs of vectors of X and Y are either both incoherent (µ-coherent
with a small value of µ) or one is sparse and the other one is incoherent. Moreover, we assume that
∥E∥2 ≤ ε.

Main theorem. If the assumptions hold and we take ℓ0, ℓa, ℓb to be a small multiple of µk, then
the column index J returned by Algorithm 1 satisfies

∥A−A(:, J)A(:, J)†A∥2 ≤ O

(
εn

√
k

ℓ
· σ1(XZY T )

σk(XZY T )

)

with high probability.

Sketch of proof ingredients. One important ingredient in the proof of our main result is the
fact that selecting uniformly random rows from a matrix with orthonormal columns gives, with
high probability, a well conditioned matrix [8]. The second ingredient is the sRRQR, which allows
us to determine what are the most “important” columns in a given matrix (since this is used on a
rectangular matrix which is much smaller than A, this is fast to do).
Intuitively, the columns corresponding to the index set Ja generated by lines 1 and 2 of Algorithm 1
are a good approximation to the part of A that corresponds to the pairs of vectors of X and Y that
are of type (incoherent,incoherent) or (incoherent,sparse). The additional selection of ℓb uniformly
random columns in line 3 ensures that, with high probability, also the information from the pairs
of vectors of X and Y of type (sparse,incoherent) is taken care of.
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Take-away messages and open questions

The analysis of Algorithm 1 shows that this combination of randomness and sRRQR is able to
combine the speed of randomized algorithms with the reliability of sRRQR, for the matrices that
admit a decomposition with the assumptions above. While it is difficult, in general, to check
whether a matrix A admits a decomposition satisfying these assumptions, the objective of this talk
is to shed some light on the excellent practical performance of simple sublinear-time algorithms for
column and row subset selection. It is easier to think of XZY T as the singular value decomposition
of A or its best rank-k approximation, but actually, we do not require X and Y to have orthonormal
columns, as long as they are well-conditioned. This flexibility allows us to apply our bounds to a
larger class of matrices.
Our results do not cover all the matrices for which there is hope. For example, a scenario that is
not covered by the current theory and is left for future work consists of matrices that have some
pairs of vectors of X and Y for which one of them is incoherent and the other one does not have
any specific assumption (that is, it may be coherent but not sparse).
It is possible to formulate an iterative version of Algorithm 1, such as the one considered in [6],
in which one, after line 3, again performs an sRRQR factorization, adds some uniformly sampled
rows, and then repeats this procedure a couple of times alternating between the selection of rows
and columns. While the practical benefits of this “iterative refinement” for many matrices have
been well documented, a theoretical analysis is still lacking and is an interesting direction for future
research.
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