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Abstract

A fundamental problem in numerical linear algebra is the approximation of the action of a matrix
function f(A) on a vector b, where A ∈ Cn×n is a matrix that is typically large and sparse, b ∈ Cn

is a vector and f is a function defined on the spectrum of A. In this work, we focus on the
case of a Hermitian matrix A. We recall that when A is Hermitian, given an eigendecomposition
A = UDUH , the matrix function f(A) is defined as f(A) = Uf(D)UH , where f(D) is a diagonal
matrix obtained by appliying f to each diagonal entry of D. We refer to [12] for an extensive
discussion of matrix functions.
Popular methods for the approximation of f(A)b are polynomial [16, 13, 8, 7, 11] and rational
Krylov methods [6, 15, 9, 1, 3]. The former only access A via matrix-vector products, while the
latter require the solution of shifted linear systems with A. When the linear systems can be solved
efficiently, rational Krylov methods can be more effective than polynomial Krylov methods since
they usually require much fewer iterations to converge. However, there are several situations in
which rational Krylov methods are not applicable, either because the matrix A is only available
implicitly via a function that computes matrix-vector products, or because A is very large and the
solution of linear systems is prohibitively expensive.
When A is Hermitian, the core component of a polynomial Krylov method is the Lanczos algo-
rithm [14], which constructs an orthonormal basis QM = [q1 . . . qM ] of the polynomial Krylov
subspace KM (A, b) = span{b, Ab, . . . , AM−1b} by exploiting a short-term recurrence. The prod-
uct f(A)b can then be approximated by the Lanczos approximation

fM := QMf(TM )e1∥b∥2, TM := QH
MAQM , (1)

where e1 denotes the first unit vector. The Lanczos algorithm uses a short-term recurrence in the
orthogonalization step, so each new basis vector is orthogonalized only against the last two basis
vectors, and only three vectors need to be kept in memory to compute the basis QM . Although
the basis QM and the projected matrix TM can be computed by using the short-term recurrence
that only requires storage of the last three basis vectors, forming the approximate solution fM still
requires the full basis QM . When the matrix A is very large, there may be a limit on the maximum
number of basis vectors that can be stored, so with a straightforward implementation of the Lanczos
method there is a limit on the number of iterations of Lanczos that can be performed and hence on
the attainable accuracy. In the literature, several strategies have been proposed to deal with low
memory issues. See the recent surveys [10, 11] for a comparison of several low-memory methods.
In this presentation we propose a new low-memory algorithm for the approximation of f(A)b. Our
method combines an outer Lanczos iteration with an inner rational Krylov subspace, which is used
to compress the outer Krylov basis whenever it reaches a certain size.
The fundamental insight underlying this method is that, leveraging the results presented in [2], the
vector fM defined in (1) (for simplicity, assuming ∥b∥2 = 1) can be approximated by

fM ≈ QM
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where T1 is an m × m leading principal submatrix of TM , and U1 is an orthonormal basis of a
rational Krylov subspace generated using the small matrix T1. One can observe that the first
summand of this expression can be computed after m steps of the Lanczos algorithm. Moreover,
once the first term has been computed, it is no longer necessary to keep all the first m columns of
the matrix QM in memory, since computing the second term only requires the few vectors obtained
by multiplying the first m columns of QM on the right by the matrix U1. Finally, the second term
can be computed by recursively applying the same procedure.
Similarly to [4], the inner rational Krylov subspace does not involve the matrix A, but only small
matrices. This is fundamental, since constructing a basis of the inner subspace does not require the
solution of linear systems with A, and hence it is cheap compared to the cost of the outer Lanczos
iteration. Theoretical results show that the approximate solutions computed by our algorithm
coincide with the ones constructed by the outer Krylov subspace method when f is a rational
function, and for a general function they differ by a quantity that depends on the best rational
approximant of f with the poles used in the inner rational Krylov subspace.
If the outer Krylov basis is compressed every m iterations and the inner rational Krylov subspace
has k poles, our approach requires the storage of approximately m + k vectors. Additionally, due
to the basis compression, our approximation involves the computation of matrix functions of size
at most (m+k)× (m+k), so the cost does not grow with the number of iterations. This represents
an important advantage with respect to the Lanczos method, since when the number of iterations
is very large the evaluation of f on the projected matrix can become quite expensive.
Numerical experiments show that the proposed algorithm is competitive with other low-memory
methods based on polynomial Krylov subspaces.
The content of this presentation draws on the findings presented in [5].
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