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Abstract

Identifying the gap between two consecutive eigenvalues of a real symmetric matrix A ∈ Rn×n

is an important task that is often encountered in applications, such as in electronic structure
computations. For instance, in Kohn-Sham Density Functional Theory [5] one has to determine
the spectral projector Pµ associated with the Fermi level (or chemical potential) µ ∈ R, which
corresponds to the occupied states of a system described by a discrete Hamiltonian A. In the case
of insulators at zero electronic temperature, there is a gap separating the first k eigenvalues of
A from the rest of the spectrum, and the Fermi level µ lies inside the gap between the k-th and
(k + 1)-th eigenvalue of A, where k is the number of electrons in the system. In this setting, the
spectral projector Pµ = hµ(A) is often approximated using polynomials or rational functions that
approximate the step function hµ(λ), which takes the value 1 for λ < µ and 0 for λ > µ. In order
to use this approach, one first needs to compute a value of µ that lies in the gap between λk and
λk+1, where we denote the eigenvalues of A as λ1, . . . , λn in nondecreasing order.
Instead of looking for the gap between λk and λk+1 for a specific k, in this talk we tackle this
problem from a different perspective, and aim to find all gaps in the spectrum of A that are larger
than a certain threshold. Since in practical applications the gap between λk and λk+1 is often
relatively large, we expect that this approach will provide useful results even when one needs to
find a single, specific gap.
Let us denote by ne(µ) the number of eigenvalues of A that are strictly smaller than µ. Assuming
that µ does not coincide with an eigenvalue of A, we have ne(µ) = rank(Pµ) = tr(Pµ). Therefore,
ne(µ) can be estimated by estimating tr(Pµ) with Hutchinson’s stochastic trace estimator [4] com-
bined with the Lanczos algorithm [7, Algorithm 6.15]. Given s random Gaussian vectors {xi}si=1,
Hutchinson’s stochastic trace estimator approximates tr(Pµ) with

trHs (Pµ) :=
1

s

s∑
i=1

xT
i Pµxi.

Since Pµ = hµ(A), each quadratic form can be approximated using the Lanczos algorithm. Let
V

(i)
m ∈ Rn×m be an orthonormal basis of the Krylov subspace

Km(A,xi) = span{xi, Axi, . . . ,A
m−1xi},

constructed with the Lanczos algorithm, and let the tridiagonal matrix T
(i)
m := V

(i)T
m AV

(i)
m be the

projection of A onto Km(A,xi). We can approximate xT
i Pµxi with

ψ(i)
m (µ) := ∥x∥22eT1 hµ(T (i)

m )e1, j = 1, . . . , Nf ,

so we obtain the trace approximations

tr(Pµ) ≈
1

s

s∑
i=1

ψ(i)
m (µ).

If we use the same vectors {xi}si=1 for different µ, these trace approximations can be computed
simultaneously for many different µ by using the same Krylov subspaces Km(A,xi), with a cost that

1



is only slightly higher than for a single value of µ. This approach has already been used in literature
on related problems, such as the estimation of the number of eigenvalues of A in an interval or the
estimation of spectral densities [3, 6]. In this talk we will focus on thoroughly analyzing this method
for the detection of spectral gaps, with the goal of determining how to choose the parameters s
and m in order to minimize the computational cost and ensure that all gaps with relative width
above a given threshold θ ∈ (0, 1) are found (up to a failure probability δ).
The error of Hutchinson’s estimator can be bounded, for instance, with [2, Theorem 1], which states
that

P
(
|tr(Pµ)− trHs (Pµ)| ≥ ε

)
≤ δ if s ≥ 4

ε2
(
∥Pµ∥2F + ε∥Pµ∥2

)
log(2/δ).

However, we have ∥Pµ∥2F = ne(µ), and ne(µ) = O(n) when µ is near the middle of the spectrum, so
to achieve any fixed absolute accuracy ε we would have to take s = O(n), which becomes unfeasible
as n grows. This means that with this approach it is prohibitively expensive to try and find a value
of µ in the gap between λk and λk+1 by requiring that trHs (Pµ) ≈ ne(µ) = k. Instead, we use a
different point of view.
If we consider tr(Pµ) as a function of µ, it is a nondecreasing and piecewise constant function, with
a jump of height 1 whenever µ coincides with an eigenvalue of A. A similar property holds for
trHs (Pµ), with the difference that the jumps have random heights, each with expected value 1. In
particular, trHs (Pµ) is constant for all µ ∈ [a, b] if the interval [a, b] contains no eigenvalues of A.
This observation can be exploited to find gaps in the spectrum of A, by looking for intervals in
which the Lanczos approximation 1

s

∑s
i=1 ψ

(i)
m (µ) is almost constant in µ and has a small error. For

instance, if for a constant C and a small ε > 0 we can show that

trHs (Pµ) ∈ [C − ε, C + ε] for all µ ∈ [a, b],

then we can conclude that either trHs (Pµ) is constant in the interval [a, b] and hence [a, b] is a gap in
the spectrum of A, or all jumps in trHs (Pµ) associated with eigenvalues in [a, b] have heights smaller
than 2ε. If ε is small enough, the latter event has a small chance of occurring.
In order to make the argument outlined above rigorous, we obtain a bound on the probability of
having small jumps in trHs (Pµ), as well as a posteriori error bounds and estimates for the Lanczos
approximation of the quadratic forms xT

i Pµxi. By combining these bounds, we will show that
for a given budget of matrix-vector products with A, the best way to allocate it is to set s = 1,
i.e., use a single random vector for Hutchinson’s estimator and concentrate all the computational
effort on the Lanczos algorithm. We also obtain an a priori bound on the accuracy of the Lanczos
approximation that depends on the relative gap width θ, which will allow us to predict how many
Lanczos iterations are needed to ensure that all gaps larger than a given width are detected.
The theoretical analysis is complemented by a detailed computational discussion, leading to an
algorithm that is able to detect gaps efficiently and reliably. The effectiveness of the proposed
method will be showcased with several numerical examples. Further details can be found in the
preprint [1].
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