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Abstract

Data assimilation refers to a class of methods which seek to find the most likely state of a dynamical
system by combining information from a (numerical) model of the system of interest with measure-
ments of the system [2]. The most mature application of data assimilation is to numerical weather
prediction, where large dimensional problems (109 dimensional states and 107 measurements) need
to be solved in a very short amount of time. Algorithms also need to be highly parallelisable in
order to exploit high performance computing resources available at meteorological centres.
In variational data assimilation methods, a non-linear least squares problem is solved via a Gauss-
Newton approach [5]. One computationally expensive component of this implementation consists of
approximately solving large linear systems. Preconditioners can help to speed up the convergence
of iterative methods, but it can be challenging to design effective and efficient preconditioning
methods. This is particularly true for the weak-constraint 4D-Var problem, which accounts for
the fact that the numerical model itself is imperfect. Relaxing the assumption of a perfect model
increases the size of the state space, but introduces the possibility of using parallel-in-time [3]
methods, compared to the strong constraint method where model evaluations must be performed
in serial.
For a fixed time window [t0, tN ], xt

i ∈ Rs denotes the true state of a dynamical system of interest at
time ti, with observations yi ∈ Rpi made at times ti. Prior information obtained from a numerical
model, xb ∈ Rs, is then combined with the observation information to find xi ∈ Rs, the most likely
state of the system at time ti. The prior, or background state, is valid at initial time t0 and can be
written as an approximation to the true state via xb = xt

0 + ϵb. We assume that the background
errors ϵb ∼ N (0, B). We define a, possibly non-linear, observation operator Hi : Rs → Rpi which
maps from state variable space to observation space at time ti. Observations are written as yi =
Hi[x

t
i] + ϵi ∈ Rpi , for i = 0, 1, . . . , N , where the observation error ϵi ∼ N (0, Ri) for Ri ∈ Rpi×pi .

This weak constraint 4D-Var problem then leads to a non-linear objective function of the form:
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Within each outer loop, the inner loop minimises a quadratic objective function to find δx(l) ∈
Rs(N+1), where δx(l) = x(l+1) − x(l). Writing δx = (δx⊤
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⊤
N )⊤, the full non-linear

observation operator Hi (similarly the model operator Mi) is linearised about the current best
guess x(l)

i to obtain the linearised operator H(l)
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i ). The updated initial guess δx(l)

0
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The aim of the inner loop is to solve the symmetric positive definite system given by

Sδx = LTD−1b+HTR−1d, S = LTD−1L+HTR−1H (1)
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with Mi,Hi being the linearisations of Mi and Hi about the current solution.
However, the primal formulation, (1), has limited potential for acceleration via preconditioning
approaches. In particular, it is difficult to exploit the inherent parallelism in the forward problem
when designing preconditioners. Recent work has focused on a reformulation of the linearised
objective function as a saddle point system [6] which takes the form
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A number of approaches to precondition the model term, L, have been proposed (see e.g. [6, 7,
12, 11]), many of which impose parallel-in-time structure on L̂−1 ≈ L−1. However, testing and
comparing these new preconditioners in realistic frameworks is not straightforward. Variational
data assimilation requires access to linearised model and adjoint operators. The time cost of
implementing these for a new problem means that researchers often test their new approaches on a
limited number of toy problems, such as the Lorenz 96 problem [9] or the shallow water equations.
If available (and accessible to the researchers), the next step is a full scale implementation within
an operational code, meaning that even in the best case there is a gap in test problems. Data
assimilation methods are also increasingly being applied to other dynamical systems, and the
properties of the usual toy models that make them appropriate for weather applications may no
longer be desirable or relevant for other applications.
In this project we integrate both weak- and strong-constraint 4D-Var algorithms within the Fire-
drake [8] and PETSc [1] frameworks, for both the primal (1) and saddle point (2) problems. Fire-
drake is an automated system for the solution of partial differential equations using the finite
element method. In particular, this means that tangent linear and adjoint operators are available
automatically, significantly reducing the implementational burden of applying variational data as-
similation methods to new models. For the user, the cost of setting up the 4D-Var system is not
substantially higher than the cost of a single run of the forward model Mi and application of the
observation operators Hi. This implementation is also done in parallel.
In this talk I will present the integration of variational data assimilation problems within Firedrake,
and demonstrate how this ‘plug-and-play’ approach allows users to focus on the numerical linear
algebra aspects of their problem rather than the implementation of test problems. In particular
I will present a theoretical and practical comparison of existing and new preconditioners for the
model term, L, including the block Toeplitz approaches of [6, 11], block diagonal approximations
as studied in [12], and block (α)-circulant preconditioners as used in the all-at-once setting (see
e.g [10, 4]).
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