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Abstract

The gaming industry, machine learning (ML), and artificial intelligence (AI) are areas that require
substantial computational resources and/or require very fast computations, but do not always
require high accuracy in certain computational problems. This has motivated GPU vendors, such
as NVIDIA, Google and AMD to manufacture hardware that can perform computations using low
precision 16-bit floating-point formats [4]. Two examples are bfloat16 and FP16. In comparison,
IEEE single precision uses a 32-bit floating-point format, and double precision (e.g., the default in
MATLAB) uses a 64-bit floating-point format. The use of 16-bit format can result in a 4× speedup
compared to double precision, and certain hardware accelerators (called Tensor Cores) can further
accelerate performance for operations such as matrix-vector multiplications [4].
The potential for much faster computations has fueled a growing interest in the last decade to use
powerful GPU servers for scientific applications, and in particular to use mixed precision algorithms
for problems that require high accuracy; that is, when possible, use low precision for speed, but mix
in some high precision computations to improve accuracy. Recent previous work for solving general,
well-conditioned linear systems, including iterative refinement [1, 2, 7], Cholesky factorization and
least squares problems [1, 5], QR factorization [8], and GMRES [6].
Relatively little work has been done to exploit mixed precision computations for inverse problems,
where the aim is to compute approximations of x from measured data, b, where

b = Ax+ e . (1)

A is assumed to be a large, severely ill-conditioned matrix, and e represents unknown noise and
other data measurement errors. In some applications A is known to high accuracy, while in other
applications it may be that only an approximation of A is given, or that A ≡ A(y) is given in
parametric form. Even in the case when A is known to high accuracy, due to the ill-posedness of
the problem, and the presence of noise in the measured data, computing accurate approximations
of x is a nontrivial task; special considerations, such as regularization approaches, need to be
considered for these problems [3]. In this presentation we show how Kronecker product structure
can be exploited and used in mixed precision algorithms for inverse problems.
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