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Abstract

This talk describes randomly pivoted Cholesky (RPCholesky), a randomized algorithm for com-
puting a low-rank approximation to a Hermitian postive semidefinite (psd) matrix. To compute a
rank-k approximation to an N ×N matrix, RPCholesky performs a k-step partial Cholesky de-
composition with a pivot entry randomly chosen with probabilities proportional to diagonal entries
of the current residual matrix (i.e., Schur complement). The algorithm requires O(k2N) operations
and reads only (k + 1)N entries of the input matrix.
The RPCholesky method has an interesting history. The existence of the method was briefly
noted in a 2017 paper of Musco and Woodruff [9], and it is algebraically related to an earlier
“randomly pivoted QR” algorithm of Desphande, Rademacher, Vempala, and Wang (2006, [3]).
Our paper [2], originally released in 2022, reintroduced the algorithm, described its connection to
Cholesky decomposition, evaluated the method numerically, and provided new theoretical results.
Surprisingly, this simple algorithm is guaranteed to produce a near-optimal low-rank approxima-
tion. The output of RPCholesky, and any other partial Cholesky decomposition, is low-rank
approximation of the form

Â = A(:, S)A(S, S)†A(S, :),

where S denotes the set of pivots selected by the algorithm and † denotes the Moore–Penrose
pseudoinverse. This type of low-rank approximation is known as a (column) Nyström approximation
and is used widely to accelerate kernel machine learning methods. It is known [7] that k ≥ r/ε
columns S are needed to produce a Nyström approximation Â within a 1 + ε multiplicative factor
of the best rank-r approximation JAKr, i.e.,

∥A− Â∥∗ ≤ (1 + ε) ∥A− JAKr∥∗ .
Here, ∥·∥∗ denotes the trace norm. In [2], we showed that RPCholesky achieves the guarantee:

E [∥A− Â∥∗] ≤ (1 + ε) ∥A− JAKr∥∗ when k ≥ r

ε
+ r log

(
1

εη

)
.

Here, Â is the approximation produced by k steps of RPCholesky and η = ∥A− JAKr∥∗ / ∥A∥∗
denotes the relative error of the best rank-r approximation. In expectation, RPCholesky achieves
the optimal scaling k = r/ε up to an additive term that is logarithmic in the relative error η.
RPCholesky has proven effective at accelerating kernel machine learning methods. Given a data
set x1, . . . ,xN , kernel methods perform machine learning tasks such as regression and clustering
by manipulating a psd kernel matrix A = (κ(xi,xj))1≤i,j≤N , where κ is a given positive definite
kernel function. When implemented directly, kernel methods require O(N3) operations and O(N2)
storage. By replacing A with a low-rank approximation Â (say, of rank k = O(1)), the storage and
runtime costs of these methods are reduced to O(N). This talk will present numerical experiments
from [2], which show that an RPCholesky-accelerated clustering method can be 9× to 14×
more accurate than accelerated clustering methods using other low-rank approximation techniques.
Subsequent papers have applied RPCholesky to accelerate learning of committer functions in
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biochemistry [1], as a preconditioner for conjugate gradient [4], for quadrature in reproducing
kernel Hilbert spaces [5], and compression of data sets [8].
While the standard version of RPCholesky is already fast, it is slower than it could be because
it processes the columns of the input matrix one-by-one. A blocked version of the method is
faster, but can produce approximations of lower accuracy. This talk will conclude by discussing
the recently introduced accelerated RPCholesky method [6], which simulates the performance of
original RPCholesky using a combination of rejection sampling and block-wise computations.
The accelerated RPCholesky method can be up to 40× faster than the original method while
producing the same random output (in exact arithmetic).
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