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Abstract

We consider the general problem of solving a linear system of the form

Ax = b; A ∈ Cn×n; b ∈ Cn.

The matrices A that we consider are non-singular, sparse and of high order n. For solving these
matrices, GMRES [3, Chapter 6] is a natural choice. We address two fundamental and connected
questions: How can the convergence of GMRES be predicted ? How can the convergence of GMRES
be accelerated ? Our aim is to combine three ways of accelerating GMRES convergence:

• Weighting by a Hermitian positive definite (hpd) matrix W: all inner products and norms in
the GMRES algorithm are replaced by the ones induced by W (see [1]),

• Preconditioning by a non-singular matrix H: GMRES is applied to the preconditioned prob-
lem AHu = b with x = Hu (see [3, Section 9.3]),

• Deflation by a projection operator Π := I−AZ(Y∗AZ)−1Y∗ (with Y,Z ∈ Cn×m): GMRES
is applied to the projected problem ΠAHu = Πb (see [7, 4]). A suitable initialization is also
performed that accounts for the part of the solution that has been projected away.

We refer to W, H and Π as accelerators for GMRES. With words, the strategy is that the pre-
conditioner H should be a good approximation of A−1, the deflation operator should handle the
space where H does not well approximate A−1, and the weighted inner product should facilitate
the analysis. In practice, identifying efficient accelerators requires a GMRES convergence bound
where the influence of H, W and Π is explicit. We prove in [6, Theorem 4.1] that the convergence
rate is bounded by
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Further Assumptions  Major simplifications occur in the case where A is positive definite (i.e.,
its Hermitian part is hpd), the preconditioner H is hpd, and the weight equals the preconditioner
W = H. In this case (and with a technical assumption on the deflation operator), it holds that
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where M = 1/2(A + A∗) and N = 1/2(A − A∗) are the Hermitian and skew-Hermitian parts of
A, and the spectrum of HM is in the interval [λmin(HM), λmax(HM)].

Convergence without deflation Setting Π = I (no deflation) and with an identity from [2] it
is proved in [5, Theorem 4.3] that
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where ρ(·) denotes the spectral radius of a matrix. The residuals are bounded with respect to
two quantities. The first is the condition number of HM, a measure of whether H is a good
preconditioner for the hpd matrix M. The second is the spectral radius of M−1N, a measure of
how non-Hermitian the problem is. The takeaway is that fast convergence is guaranteed if the
problem is mildly non-Hermitian and H is a good preconditioner for M. The bound also has
important consequences for parallel computing and the analysis of domain decomposition methods.

A new deflation space [6, Theorem 6.3] When the problem is significantly non-Hermitian
(in terms of ρ(M−1N)), we propose to combine Hermitian preconditioning with spectral deflation.
Under the same assumptions as above, we choose the matrices Z and Y in the characterization of
the projection operator Π as follows. First, we denote by (λj , z

(j)) ∈ iR×Cn (for j = 1, . . . , n) the
eigenpairs of the generalized eigenvalue problem Nz(j) = λj Mz(j). Then, with a chosen threshold
τ > 0 we select for the deflation operator, the highest frequency eigenvectors, by setting

span(Z) := span{z(j); |λj | > τ} and Y = HAZ.

Then the convergence of weighted, preconditioned and deflated GMRES is bounded by
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Numerical illustrations show that preconditioning the Hermitian part in a way that is scalable leads
to overall scalability and that spectral deflation accelerates convergence when the problems become
more strongly non-Hermitian.
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