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Abstract

Let Cd denote the set of nonzero closed convex cones in Rd. Let A ∈
Rm×n and (P,Q) ∈ Cm × Cn. The nonconvex optimization problem

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

⟨u,Av⟩, (1)

has been studied in depth in [1], mainly from a theoretical point of view.
Any critical (stationary) point (u, v) of (1) satisfies the KKT optimality
conditions 

P ∋ u ⊥ (Av − σu) ∈ P ∗,

Q ∋ v ⊥ (A⊤u− σv) ∈ Q∗,

∥u∥ = 1, ∥v∥ = 1,

(2)

for some real Lagrange multiplier σ, where P ∗ and Q∗ are the dual cones
of P and Q, respectively. Observe that when P = Rm and Q = Rn, (2)
provides us the (classical) singular values of A.

The model (1) covers many interesting optimization problems. Some of
them are: maximal angle between two cones [2], obtained when m = n and
A = In, expressed by

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

⟨u, v⟩;

cone-constrained principal component analysis or Pareto singular values [3,
5], in which the two cones are the positive orthants of the respective spaces
as in P = Rm

+ and Q = Rn
+, formalized as

min
u ≥ 0, ∥u∥ = 1,
v ≥ 0, ∥v∥ = 1

⟨u,Av⟩;

nonnegative rank-one factorization matrix [4], equivalent to the Pareto sin-
gular value problem, and written as

min
u≥0,v≥0

∥M − uv⊤∥F .
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The above problems can be proven to be in a descending order of complexity.
Since the last formulation in particular can be used to solve the Maximal
Edge Biclique Problem, this leads to the conclusion that all the above models
are NP-hard to solve.

We will discuss the linear algebra techniques used to reduce each prob-
lem to the following one, with a focus on sufficient conditions needed for
each problem to be instead solved in polynomial time.

An exact (and thus necessarily exponential time) brute force active set
algorithm is presented. Its proof of correctness is based on the observation
in [1] that when we restrict the problem on the relative interior of the faces
of the cones P and Q, then the relations (2) reduces to a generalized eigen-
value problem with additional constraints. This can be solved with classical
techniques, with some careful handling in case of eigenvalues with relative
eigenspace of dimension more than one.

We will describe the algorithm with a focus on how to cut computational
cost through the study of the stationary points of the problem in order to
distinguish minima from saddle points.

We compare the active set algorithm with an exact non-convex quadratic
programming solver, that relies on the McCornick relaxation to solve the
problem, and thus performs well in case of sparse problems.

Moreover, we show two additional iterative algorithms to solve the gen-
eral problem, an alternating method with extrapolation and a fractional
programming method. These are methods that are only guaranteed to con-
verge to stationary points, and cannot certify the minimality of the solution
they find.

We discuss and illustrate the use of these algorithms on several examples,
as in the computation of maximal angles between the Schur cone and other
cones or the computation of maximal edge bicliques.

We show how they can lead to rigorous proofs or new conjectures in spe-
cial cases, such as the maximal angle between the cone of positive semidefi-
nite matrices and the cone of nonnegative symmetric matrices.
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