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Abstract

One of the most important tasks in numerical linear algebra is solving the linear system

Ax = b, (1)

where A ∈ Rd×d is symmetric positive definite with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Krylov
subspace methods (KSMs) such as the conjugate gradient method are among the most powerful
methods for this problem and are guaranteed to converge extremely rapidly if the system is well-
conditioned; i.e. if λ1 ≈ λd. For ill-conditioned systems, preconditioning can greatly accelerate
the convergence of KSMs. When A has a rapidly decaying spectrum, a technique called Nyström
preconditioning has proven effective [1].
Consider the Nyström approximation

A⟨Ks⟩ := (AKs)(K
T
s AKs)

†(KT
s A), (2)

where Ω ∈ Rd×(r+2) is a matrix of independent standard normal random variables and Ks :=
[Ω AΩ · · · As−1Ω] ∈ Rd×s(r+2). It can be guaranteed that if s = O(log(d)), then with high
probability, A⟨Ks⟩ approximates A with spectral-norm error comparable to the best-possible rank-
r approximation to A; i.e. ∥A−A⟨Ks⟩∥ = O(λr+1) [3]. Define a preconditioner

P :=
1

λr+1
UDUT + (I−UUT), (3)

where UDUT is the eigendecomposition of A⟨Ks⟩. Following the approach of [1], we show that if
θ ∈ [λd, λr+1] and s = O(log(d)), then with high probability, then

κ(P−1/2AP−1/2) = O(λr+1/λd). (4)

As a result, preconditioned-CG with the preconditioner (3) converges at a rate depending on√
λr+1/λd [2]. If A has just r large eigenvalues, the convergence of preconditioned-CG will be

extremely rapid.
One downside to Nyström preconditioning is the need to choose hyperparameters such as θ and
s. Our observation is that, after t iterations, block-CG with a starting block [b Ω] has error at
most that of Nyström preconditioned CG after t − s − 1 iterations. Thus, block-CG enjoys the
effects of (Nyström) preconditioning, without the need for constructing a preconditioner or choose
parameters.1 This allows us to prove the following convergence guarantee.2

Theorem 1. Fix a value r ≥ 0 and let b2, . . . ,br+2 be independent standard Gaussian vectors.
Then after t iterations the block-CG iterate xb-CG

t corresponding to a starting block [b b2 · · · br+2]
satisfies, with probability at least 99/100,

∥A−1b− xb-CG
t ∥A

∥A−1b∥A
≤ 2 exp

(
− t− (3 + log(d)/2)

3
√

λr+1/λd

)
.

1We are assuming iterations, not matrix-vector products, are the dominant cost.
2This bound is reminiscent of the “killing off the top eigenvalues” bounds for CG. However, instead of a burn-in

period of r iterations, we require a burn-in period of O(log(d)) iterations (independent of r).

1



More generally, for any µ ≥ 0, block-CG (and Nyström preconditioned CG) can be used to solve
the regularized linear system

(A+ µI)x = b. (5)

Systems of the form (5) arise in a variety of settings, but we are particularly motivated by two
critical tasks in machine learning and data science: solving ridge-regression problems and sampling
Gaussian vectors. By adapting our bound Theorem 1 for block-CG, we obtain state-of-the-art
convergence guarantees for existing Lanczos-based methods used to solve these tasks.
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