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Abstract

1 Constrained optimization

We consider large smooth constrained optimization problems of the form

NC min
x∈ℜn

ϕ(x)

subject to c(x) = 0, ℓ ≤ x ≤ u,

where ϕ(x) is a smooth scalar function and c(x) ∈ ℜm is a vector of smooth linear or nonlinear
functions. We assume that first and second derivatives are available. If the constraints include any
linear or nonlinear inequalities, we assume that slack variables have already been included as part
of x, and appropriate bounds are included in ℓ and u. Problem NC is general in this sense.

2 LANCELOT

LANCELOT [1, 2, 6] is designed to solve large, smooth constrained optimization problems. For
problem NC, LANCELOT solves a sequence of about 10 BCL (Bound-Constrained augmented La-
grangian) subproblems of the form

BCk min
x∈ℜn

ϕ(x)− yTk c(x) +
1
2ρkc(x)

Tc(x)

subject to ℓ ≤ x ≤ u,

where yk is an estimate of the dual variables for the nonlinear constraints c(x) = 0, and ρk > 0 is
a penalty parameter. After BCk is solved (perhaps approximately) to give a subproblem solution
x∗k, the size of ∥c(x∗k)∥ is used to define BCk+1:

• If ∥c(x∗k)∥ is sufficiently small, stop with “Optimal solution found”.

• If ∥c(x∗k)∥ < ∥c(x∗k−1)∥ sufficiently, update yk+1 = yk − ρkc(x
∗
k) and keep ρk+1 = ρk.

• Otherwise, keep yk+1 = yk and increase the penalty (say ρk+1 = 10ρk).

• If the penalty is too large (say ρk+1 > 1010), stop with “The problem is infeasible”.

3 Algorithm NCL

Algorithm NCL [7] mimics LANCELOT with only one change: subproblem BCk is replaced by the
equivalent larger subproblem

NCk min
x∈ℜn, r∈ℜm

ϕ(x) + yTkr +
1
2ρkr

Tr

subject to c(x) + r = 0, ℓ ≤ x ≤ u.
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Given a subproblem solution (x∗k, r
∗
k), the choice between updating yk or increasing ρk is based on

∥r∗k∥. We expect ∥r∗k∥ → 0, so that x∗k is increasingly close to solving NC.
The active-set solvers CONOPT [3], MINOS [8], and SNOPT [13] are nominally applicable to NCk.
Their reduced-gradient algorithms would naturally choose r as basic variables, and the x variables
would be either superbasic (free to move) or nonbasic (fixed at one of the bounds). However, this
is inefficient on large problems unless most bounds are active at the subproblem solution x∗k.
In contrast, interior methods welcome the extra variables r in NCk, as explained in [7]:

• The Jacobian of c(x) + r always has full row rank. NCL can therefore solve problems whose
solution does not satisfy LICQ (the linear independence constraint qualification). It is also
applicable to MPEC problems (Mathematical programming problems with equilibrium con-
straints).

• The sparse-matrix methods used for each iteration of an interior method are affected very
little by the increased matrix size.

4 The linear system in nonlinear interior methods

For simplicity, we assume that the bounds ℓ ≤ x ≤ u are simply x ≥ 0. Let y and z be dual
variables associated with the constraints c(x) = 0 and x ≥ 0 respectively, and let X = diag(x),
Z = diag(z). When a nonlinear primal-dual interior method such as IPOPT [4] or KNITRO [5] is
applied to NCk, each search direction is obtained from a linear system of the form−(H +X−1Z) JT

−ρkI I
J I

∆x
∆r
∆y

 =

r2
r3
r1

 . (K3)

Although this system large, the additional variables δr do not damage the sparsity of the matrix.
IPOPT and KNITRO have performed well on problem NCk as it stands, solving systems (K3).

5 Reducing the size of (K3)

For all NCk, ρk ≥ 1 (and ultimately ρk ≫ 1), and it is stable to eliminate ∆r from (K3) to obtain(
−(H +X−1Z) JT

J 1
ρk
I

)(
∆x
∆y

)
=

(
r2

r1 +
r3
ρk

)
, ∆r =

1

ρk
(∆y − r3). (K2)

If the original problem is convex, H+X−1Z is symmetric positive definite (SPD) and it is possible
to eliminate ∆y:

(H +X−1Z + ρkJ
TJ)∆x = −r2 + JT (r3 + ρkr1), ∆y = r3 + ρk(r1 − J∆x). (K1)

These reductions would require recoding of IPOPT and KNITRO (which is not likely to happen),
but they are practical within the nonlinear interior solver MadNLP [11].
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6 MadNLP, MadNCL, and GPUs

Algorithm NCL has been implemented as MadNCL [10], using MadNLP [11] as the solver for
subproblems NCk. MadNLP has the option of solving (K2) or (K1) rather than (K3).
For convex problems, system (K2) is symmetric quasidefinite (SQD) [14] and it is practical to use
sparse indefinite LDLT factorization. MadNLP implements this option using the cuDSS library
[12, 9] to utilize GPUs. Alternatively (and again for convex problems), (K1) is SPD and MadNLP
can use the cuDSS sparse Cholesky LDLT factorization (unless JTJ is dense).
Thus, for certain large optimization problems, MadNCL is a solver that employs GPUs and in
general is much faster than IPOPT or KNITRO. Numerical results are presented for solving security
constrained optimal power flow (SCOPF) problems on GPUs.
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