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Abstract

In this work we study the convergence of the singular value expansion (SVE) of 2D functions
(kernels). Consider a square-integrable kernel K : [a, b] × [c, d] → R, where [a, b], [c, d] ⊂ R. We
define (i) Right singular functions denoted by u1, u2, . . ., which are orthonormal with respect to
L2([a, b]) and (ii) Left singular functions denoted by v1, v2, . . ., which are orthonormal with respect
to L2([c, d]). These singular functions are defined to satisfy the relationships

σnun(x) =

∫ d

c
K(x, y)vn(y)dy, σnvn(y) =

∫ b

a
K(x, y)un(x)dx. (1)

The values σ1 ≥ σ2 ≥ · · · > 0 are called the (positive) singular values of K. The SVE of K is then
defined as

K(x, y) =
∞∑
n=1

σnun(x)vn(y). (2)

Recall that the singular vectors of a matrix A is defined with relationships Avn = σnun, u∗nA = σnv
∗
n

and the singular value decomposition (SVD) can be defined as A =
∑

n σnunv
∗
n. Thus, the SVE

can be thought of as a continuous analogue of the SVD [1].
Before the SVD of a matrix, several pioneers of modern functional analysis in the early 20th century
figured out the existence and properties of the SVE for a general square-integrable kernel. Within
these developments, Mercer [2], in 1909, showed that any continuous, symmetric positive definite
kernel K : [a, b]× [a, b] → R has a uniformly and absolutely converging SVE,

K(x, y) =

∞∑
n=1

λnun(x)un(y), (x, y) ∈ [a, b]× [a, b], (3)

which is also equivalent to its eigenfunction expansion. This is often called Mercer’s theorem. For
general kernels without positive definiteness or symmetricity, the convergence property (pointwise,
uniform, and absolute) of the SVE is an open problem.
In this work, we first prove that the conclusion of Mercer’s theorem does not hold for general
symmetric and asymmetric kernels, whenever the positive-definiteness condition is dropped. We
provide novel examples which lead to the following result.

Theorem 1. For any [a, b] ⊂ R there are continuous symmetric indefinite kernels on [a, b]× [a, b]
such that the SVE, equation (2), (i) does not converge pointwise, (ii) converges pointwise but not
uniformly, or (iii) converges pointwise but not absolutely.

We hope this theorem will clarify some confusion in the literature regarding the convergence of
the SVE whenever a symmetric kernel is not positive definite. In practice, a symmetric indefinite
kernel often possesses a pointwise converging SVE but we prove that such convergence is not always
guaranteed. Our work provides a rigorous underpinning for kernel methods using indefinite and
asymmetric kernels.
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We then prove our second main result, which is the convergence result of the SVE when a kernel
is equipped with a mild regularity condition. We say a kernel K : [a, b] × [c, d] → R is of uniform
bounded variation if ∫ b

a

∂

∂x
K(x, y)dx < V,

∫ d

c

∂

∂y
K(x, y)dy < V, (4)

holds for any fixed x, y and a uniform constant V > 0. We remark that this is a larger class
of general continuous kernels which includes, for instance, Lipschitz continuous kernels. For a
continuous kernel of uniform bounded variation, we prove the following result using the singular
value decay and a generalization of the Rademacher-Menchov theorem. (In fact, we prove that the
same conclusion holds for any continuous kernel that has a singular value decay σn = O(n−α) with
α > 1

2 .)

Theorem 2. For any [a, b], [c, d] ⊂ R, let K : [a, b]× [c, d] → R be a continuous kernel of uniform
bounded variation (see equation (4)). Then, the SVE of K, equation (2), converges pointwise almost
everywhere, unconditionally almost everywhere, and almost uniformly.

To prove the second theorem, we also provide a new bound on the decay of singular values, which is
state in the following proposition. We use a recent result [3] on the decay of the error of truncated
Legendre series approximation to prove the decay bound.

Proposition 1. For any [a, b], [c, d] ⊂ R, a continuous kernel K : [a, b] × [c, d] → R of uniform
bounded variation has σn = O(n−1) as n → ∞.

Furthermore, we provide an efficient numerical algorithm for computing the SVE of a given function.
The algorithm is divided into two steps. In the first step, we compute a pseudo-skeleton approxi-
mation using Gaussian elimination with complete pivoting (GECP), which is an iterative procedure
to approximate the kernel K(x, y) as a sum of rank-1 functions [4]. After we have computed a rank
≤ R pseudo-skeleton approximation, KR(x, y), in the first step, we improve it by performing a low-
rank SVD. The SVD decomposes KR(x, y) into a sum of outer products of orthonormal functions
with singular values and gives us an accurate truncated singular value expansion of K.
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