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Abstract

A ubiquitous task in numerical linear algebra is to compute a low-rank approximation to a matrix
A. Randomized techniques [8, 9, 10, 12] are becoming increasingly popular for computing cheap,
yet accurate, low-rank approximations to matrices. Most notably, the randomized singular value
decomposition (SVD) [9] has evolved into one of the primary choices, due to its simplicity, perfor-
mance, and reliability. In its most basic form, the randomized SVD performs the approximation
QQ∗A ≈ A, where Q is an orthonormal basis for the range of AΩ, with Ω being a tall and skinny
random sketch matrix. In many applications of low-rank approximation, such as k-means cluster-
ing [13], PCA [14], and Gaussian process regression [7], it is known that A is symmetric positive
semi-definite. In this case, one usually prefers the so-called randomized Nyström approximation [8]

Â := AΩ(Ω∗AΩ)†Ω∗A ≈ A, (1)

where Ω is, again, a random sketch matrix. This approximation has received significant attention in
the literature [8, 11, 12] and, like the randomized SVD, it enjoys strong theoretical guarantees. With
the same number of matrix-vector products, the randomized Nyström approximation is typically
significantly more accurate than the randomized SVD when the matrix has rapidly decaying singular
values. Additionally, the Nyström method requires only a single pass over the matrix, compared
to two passes for the randomized SVD, enabling all matrix-vector products to be performed in
parallel.
Recently, Boullé and Townsend [4, 5] generalized the randomized SVD from matrices to Hilbert-
Schmidt operators. Subsequent works [3, 6] employed this infinite-dimensional generalization of
the randomized SVD to learn Green’s functions associated with an elliptic or parabolic partial
differential equations (PDE) from a few solutions of the PDE. This approach uses hierarchical low-
rank techniques and exploits the fact that Green’s functions are smooth away from the diagonal
and therefore admit accurate off-diagonal low-rank approximations [1, 2]. Other applications, like
Gaussian process regression and Support Vector Machines, involve integral operators that feature
positive and globally smooth kernels. In turn, the operator is not only self-adjoint and positive but it
also allows for directly applying low-rank approximation, without the need to resort to hierarchical
techniques. Given existing results on matrices, it would be sensible to use an infinite-dimensional
extension of the randomized Nyström approximation in such situations.
In this work, we present and analyze an infinite-dimensional extension of the randomized Nyström
approximation for computing low-rank approximations to self-adjoint, positive, trace class opera-
tors. A significant advantage of the proposed framework is that once a low-rank approximation of
the operator is computed, one can use this approximation to compute a low-rank approximation
to any discretization of the operator.
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