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Abstract

We deal with the efficient and certified approximation of the generalized Lyapunov equation (GLEs)

AX +XAT +
M∑
j=1

(
NjXNT

j

)
+BBT = 0, (1)

where A,Nj ∈ Rn×n, A is Hurwitz, i.e., its spectrum is contained in the open left-half complex
plane, and B ∈ Rn×m with m typically much smaller than n. GLEs with these features naturally
arise in the context of model order reduction (MOR) of bilinear control systems [2, 5] and linear
parameter-varying systems as well as in the context of stochastic differential equations for stability
analysis [4]. For switched linear systems of the form

Σq

{
ẋ(t) = Aq(t)x(t) +Bq(t)u(t), x(t0) = 0,

y(t) = Cq(t)x(t),
(2)

the authors of [6] introduced a balancing-based MOR method that requires the solution of certain
GLEs. In (2), q : R → J := {1, . . . ,M} is the external switching signal, which we assume to be an
element of the set of allowed switching signals

S := {q : R → J | q is right continuous with locally finite number of jumps}. (3)

The symbols x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp denote the state, the controlled input, and
the measured output, respectively. The system matrices Aj ∈ Rn×n, Bj ∈ Rn×m, and Cj ∈ Rp×n

correspond to the ordinary differential equation (ODE) active in mode j ∈ J . Typically one
refers to (2) as the full-order model (FOM). Sample applications of switched systems include robot
manipulators, traffic management, automatic gear shifting, and power systems; see for instance [3]
and the references therein.
If (2) has to be evaluated repeatedly, for instance, in a simulation context for different inputs
or switching signals, or if matrix equalities or inequalities in the context of synthesis have to be
solved, then a large dimension n of the state renders this a computationally expensive task. In such
scenarios, one can rely on MOR and replace (2) by the reduced-order model (ROM)

Σ̃q

{
˙̃x(t) = Ãq(t)x̃(t) + B̃q(t)u(t), x̃(t0) = 0,

ỹ(t) = C̃q(t)x̃(t),
(4)

with Ãj ∈ Rr×r, B̃j ∈ Rr×m, and C̃j ∈ Rp×r, and r ≪ n. In many cases, see for instance [1], the
reduced system matrices are obtained via Petrov–Galerkin projection, i.e., one constructs matrices
V ,W ∈ Rn×r and then defines

Ãj := W TAjV , B̃j := W TBj , C̃j := CjV . (5)

The goal of MOR is thus to derive in a computationally efficient and robust way the matrices W ,V
such that the error y− ỹ is small in some given norm. One way to do so, originally presented in [6],
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is to solve opportune defined GLEs to obtain the projection matrices W ,V and thus the reduced
system (5). Therefore, solving efficiently large-scale generalized Lyapunov equation becomes crucial
for MOR. More in detail the MOR algorithm from [6] proceeds in two steps. First, we have to define
the matrices A := A1 and Nj := Aj −A1 for j = 1, . . . ,M and solve the GLEs

AP + PAT +
M∑
j=1

(
NjPNT

j +BjB
T
j

)
= 0, (6a)

ATQ+QA+

M∑
j=1

(
NT

j QNj +CT
j Cj

)
= 0. (6b)

Note that the matrix equations in (6) are of the form (1) by defining B := [B1, . . . ,BM ] for (6a)
and B := [CT

1 , . . . ,C
T
M ], taking the transport on the other matrices for (6b). The symmetric and

positive semi-definite solutions P,Q ∈ Rn×n are referred to as the Gramians of (2). Second, let
P = SST and Q = RRT and compute the singular value decomposition (SVD) of the product of
the Gramians factors

STR = [U1,U2]

[
Σ1 0
0 Σ2

]
[V1,V2]

T, (7)

and the projection matrices V and W are obtained via

V = SU1Σ
−1/2
1 and W = RV1Σ

−1/2
1 . (8)

This procedure is denoted as square-root balanced truncation (see [1, Sec. 7.3]). The use of the
solutions of (6) as system Gramians is justified by [6, Thm. 3], where the authors show that the
image of P and Q encode the reachability set and observability set of the switched system (2).
Main contributions: To deal with the large-scale setting, we apply the stationary algorithm
from [7] in combination with a subspace projection framework [8] to solve GLEs. We emphasize
that this is a common strategy in the literature when dealing with GLEs. Our first contribution is
the derivation of efficiently computable error estimates such that for any prescribed user tolerance
tol an approximation X̃ of (1) with guaranteed bound ∥X−X̃∥2 ≤ tol can be computed. Second,
we show how the numerical error introduced in approximating (1) may deteriorate the quality and
the stability of the ROM (4). This motivates us to propose a novel strategy that, by relying on
the error certification provided by our algorithm, ensures stability and error certification of the
MOR system. Finally, the results are validated through a synthetic example and a switched system
arising from a parametric partial differential equation (PDE).
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