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Abstract

Introduction. The search for a robust, global, and numerically stable algorithm for solving
multivariate polynomial systems has persisted for decades [2, 3, 5, 6, 7, 8, 9]. The goal is to
compute all the solutions to zero-dimensional polynomial systems of the form:p1(x1, . . . , xd)

...
pd(x1, . . . , xd)

 = 0, (1)

where d ≥ 2 and p1, . . . , pd are polynomials in x1, . . . , xd with complex coefficients. All the promising
solvers are based on an elegant approach of converting the multivariate rootfinding problem in (1)
into one or more eigenproblems At first this approach appears to be a practitioner’s dream as a
difficult rootfinding problem can be solved by the robust QR or QZ algorithm. For this reason, these
methods have received considerable research attention from the scientific computing community.
However, we are currently stuck waiting for new ideas to emerge from algebraic geometry or hoping
for novel structured eigensolvers from numerical linear algebra.
A popular class of techniques known as hidden variable resultant methods are notoriously difficult—
and maybe impossible—to make numerically robust [6]. Naive implementations are plagued with
unwanted spurious solutions, inaccurate roots, and miss zeros. In this talk, we will discuss the
ongoing quest for a numerically stable rootfinder using Sylvester resultants, Gröbner bases, Möller–
Stetter matrices, and Macaulay resultants. Our focus will be on understanding the sources of the
instability in these approaches, in the hope that they can be circumvented.
Motivation for Eigenvalue-Based Approaches. Given a well-conditioned rootfinding prob-
lem, we would like to derive a stable algorithm to solve it. Roughly speaking, an algorithm is
stable if it computes an accurate solution to well-conditioned problems. The search for a stable
algorithm for multivariate polynomial rootfinding is motivated by the existence of stable algorithms
for many related problems. All the univariate problems, such as eigenproblems, univariate poly-
nomial rootfinding, and matrix polynomial eigenproblems, have stable algorithms. Likewise, there
are stable algorithms to solve linear systems of the form Ax = b, which are multivariate.
For univariate rootfinding, instead of solving a rootfinding problem directly, one can first construct
an eigenproblem whose eigenvalues match the desired roots. The companion matrix of a polynomial
p(x) is an example of this, as its characteristic polynomial is p, so its eigenvalues are the roots of p.
One can solve the companion eigenproblem using an eigensolver, which is one of the most reliable
algorithms in numerical linear algebra. For roots in [−1, 1], a provably stable algorithm for uni-
variate polynomial rootfinding is based on the colleague matrix [4]. For multivariable rootfinding,
we attempt the same conversion, i.e., we try to convert (1) into one or more generalized eigenvalue
problems (GEPs). For polynomial systems in (1) in d variables, one usually constructs d GEPs,
the eigenvalues of which give the coordinates of each root. The Macaulay resultant method is an
exception as it constructs a single GEP and extracts the roots from the eigenvectors, not eigenval-
ues. Analogously to the univariate case, one hopes that the eigenproblems are as well-conditioned
as the original rootfinding problem. Unfortunately, this is not always the case.
Gröbner bases, Möller–Stetter matrices, rational univariate reductions, multiparameter eigenvalue
problems, and Macaulay resultants all convert (1) into one or more GEPs, either directly or by
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way of a univariate rootfinding problem. For each method, we show that either a constructed
eigenproblem or an intermediate univariate rootfinding problem can be more ill-conditioned than
the original rootfinding problem by a factor that is exponentially large in d.
A devastating example. The analysis of the instability of Sylvester and Cayley resultant method
appears in [5, 6] and studied the following “devastating” polynomial rootfinding problem.

Example 1 Let Q be a d× d orthogonal matrix, σ > 0, and consider (1) with

pi(x1, . . . , xd) = x2i + σ

d∑
j=1

qijxj , 1 ≤ i ≤ d,

where qij is the (i, j) entry of Q. The system has a root at (0, . . . , 0).

By a conditioning analysis, one should expect to find the root at (0, . . . , 0) to within ≈ σu, where u
is the unit roundoff on a computer. However, it has been shown that Sylvester resultants can only
achieve ≈ σ−2u when d = 2 and Cayley can only achieve ≈ σ−du [6]. The eigenproblems constructed
by these methods can be far more sensitive to perturbations than the original rootfinding problem,
which is a hallmark of an unstable algorithm. Similar examples show that Gröbner bases, Möller–
Stetter matrices, rational univariate reductions, multiparameter eigenvalue problems, and Macaulay
resultants can also generate highly ill-conditioned eigenproblems.
Theoretical results supported by numerical experiments. One might be hopeful that these
worst-case examples are rarely and never realized in practice. Unfortunately, this is not the case
in practice. We regularly observe the ill-conditioning in numerical experiments, causing solvers to
generate spurious solutions, miss roots, or compute them inaccurately. There is a small glimmer
of hope in some new approaches that construct structured eigenproblems and solve them with
eigensolvers that respective that structure [1].
We hope that our work inspires new approaches that circumvent the limitations of current tech-
niques and provide robust solutions to the fundamental multivariate polynomial roofinding problem.
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