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Abstract

Frequently in online or data-driven applications, new information becomes available in the form of
a stream (Syamantak et al. [KS24]). Because processing the data for analysis or inference often
involves matrix factorizations like the SVD or an eigendecomposition, we develop new updating
methods. As repeatedly refactoring a large matrix is expensive, we propose low-rank updates to a
previous factorization. Thus we consider the model

Ā = A+ CW T ,

where the previous data A is m × n, and the updates C and W are m × t and n × t. Simply
computing Ā costs mnt multiplications, which we therefore regard as an optimal complexity. For
some well known factorizations, efficient updating methods are known. For instance, the methods
of Gill et al. [GGMS74] update the Cholesky or LDLT factorization in O(mnt) flops, while Golub
and Van Loan [GV13, Sec 12.5] describe a method for updating the QR factorization. Also, Bunch
et al. [BNS78] describe an algorithm for updating the eigendecomposition, while Brand [Bra06] and
Moonen et al. [MVDV92] develop methods for the SVD. The complexity of the latter methods also
scales as O(mnt), but updating an eigendecomposition or SVD typically involves iterative nonlinear
equation solves. In SVD computation, the first step is to reduce the matrix to (upper) bidiagonal
form before computing the singular values of the bidiagonal (e.g., implemented in LAPACK’s bdsqr
and gebrd [ABB+99]). Since the bidiagonalization and SVD are closely related, it is not surprising
that attempts have been made to replace the SVD with the bidiagonalization for low-rank matrix
approximations (Simon and Zha [SZ00]). Even though the SVD guarantees the best low-rank
approximation, the bidiagonalization can be computed with a predetermined number of orthogonal
transformations, making it computationally attractive.
The most stable method for computing a bidiagonal factorization uses sequences of orthogonal
Householder reflectors. Because this requires and overwrites the matrix elements in memory, it
is best suited for dense systems. Its complexity scales as O(mn2) flops and mn memory and it
is therefore limited to small or medium problems. A second approach accesses the data only via
matrix-vector products within a short two-vector recursion. This Golub-Kahan bidiagonalization
(GKB) produces a partial bidiagonalization after k iterations. For a general A the GKB complexity
is O(kmn). When the data is sparse or otherwise structured, GKB can exploit the structure
with potentially much fewer flops (but without further modifications suffers from rapid loss of
orthogonality). Our algorithms reuse an existing bidiagonal factorization A = QBP T to compute
the next factorization

Q̄B̄P̄ T = QBP T + CW T

at reduced cost. To exploit previous information fully, we develop sparsity-exploiting bidiagonal-
ization algorithms. One method is gk-bidiag, which we compare to LAPACK’s bidiagonalization
functions (Table 1). We also propose methods such as a compact representation of products of
Householder matrices combined with the GKB iteration.
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Problem m n
gk-bidiag LAPACK

error secs error secs
GL7d12 8899 1019 0.96 0.031 0.97 26
ch6-6-b2 2400 450 1.6 0.0051 0.94 1.2
ch7-6-b2 4200 630 1.1 0.012 0.95 3.9
ch7-7-b2 7350 882 1.3 0.023 0.97 16
cis-n4c6-b2 1330 210 2.7 0.0017 0.91 0.3
mk11-b2 6930 990 1.2 0.02 0.97 16
n4c6-b2 1330 210 2.9 0.0017 0.91 0.3
rel6 2340 157 0.7 0.0028 0.71 0.56
relat6 2340 157 0.74 0.0029 0.74 0.71

Table 1: Updating a rank r = 50 truncated bidiagonal factorization Q̄1:rB̄1:rP̄
T
1:r when a rank-one

update is added to a previous factorization. LAPACK subroutines and the sparsity-preserving solver
gk-bidiag are applied to 9 SuiteSparse matrices [DH11]. The error is ∥Ā− Q̄1:rB̄1:rP̄

T
1:r∥F /∥A∥F .
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