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Abstract

Introduction. Krylov subspace methods are highly effective in solving problems with sparse ma-
trices at scale. Many large-scale problems in mechanics and fluid dynamics can be addressed using
preconditioned Krylov solvers, and numerous specialized algorithms based on subspace methods
have been developed that scale to the largest supercomputers. However, many scientific and engi-
neering problems impose bounds on variables. Examples include nonnegative matrix factorization,
contact problems in mechanics, and planning problems with resource and capacity constraints.
Data science problems often have ∥ · ∥∞- or ∥ · ∥1-norms. In these cases, active bounds manifest as
boundary conditions, but it is often unknown in advance which bounds will be active.
Each bound on a variable is expressed as an inequality. In the optimality conditions, each inequality
leads to a nonlinear complementarity condition that couples the variable and the corresponding
Lagrange multiplier. The traditional approach is to linearize the system of optimality conditions
and solve the resulting saddle point system. Each linearization is solved within a subspace with
a iterative method for the saddle point problems [1]. However, this subspace is not reused in the
next linearization; a new subspace is built in the subsequent outer iteration. This is inefficient.
We propose using a single subspace that is kept over all the iterations. Let us summarize how
subspace methods reduce the problem and how we can generalize this.
A Krylov subspace for a square matrix A ∈ Rn×n and a vector v ∈ Rn is defined as Kk(A, v) :=
span{v,Av,A2v, . . . , Ak−1v}. Equivalently, this subspace can be written span{r0, r1, r2, . . . , rk−1},
where ri are the residuals, which are mutually orthogonal.
The conjugate gradients methods (CG) minimizes the error in the A-norm over the Krylov subspace
for a symmetric and positive definite matrix A. Specifically, it solves minx∈x0+Kk(A,r0) ∥x − x∗∥2A.
Expanding the solution as xk = x0 + Vkyk and writing down the optimality conditions leads to
a small linear system: (V T

k AVk)yk = ∥r0∥2e1. Since A is symmetric, the matrix V T
k AVk is a

tridiagonal. If we have found the solution for a basis Vk, the solution for the next iteration can be
warm-started from the previous solution.
In the generalized minimal residual (GMRES), we minimize the 2-norm of the residual over the
Krylov subspace. It is minx∈x0+K(A,r0) ∥b − Ax∥2, for a general square matrix A. The optimality
conditions correspond to a small least-squares problem: miny∈Rk

∥∥∥r0∥2 e1 − (V T
k+1AVk)yk

∥∥
2
.

Here, the matrix V T
k+1AVk has a Hessenberg structure. Again, if we have found the solution for

iteration k, the next solution is easily found using warm-starting.
In this talk, we generalize this approach to a bounded variable least squares problem:

min ∥Ax− b∥2 subject to ℓ ≤ x ≤ u, (1)

where A ∈ Rm×n, b ∈ Rm and ℓ, u ∈ Rn, lower and upper bounds.
We will restrict the solution of (1) to a subspace, leading to a small projected problem. Instead
of a small linear system as in CG or a small least-squares problem as in GMRES, this
will now result in a small quadratic programming (QP) problem. This system will solve
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for the optimal coefficients of the solution and for the Lagrange multipliers. With these, we will
calculate a residual that will be added to the basis.

Optimality conditions. Let us start with the optimality conditions for problem (1). These are

AT (Ax− b)− λ+ µ = 0,

λi(xi − ℓi) = 0, i ∈ {1, . . . ,m}
µi(ui − xi) = 0, i ∈ {1, . . . ,m}

ℓi ≤ xi ≤ ui, i ∈ {1, . . . ,m}
λ ≥ 0 µ ≥ 0.

(2)

We now expand the solution in a orthogonal basis Vk as xk = Vkyk. The problem (1) then becomes

min ∥AVkyk − b∥22 subject to l ≤ Vky ≤ u. (3)

The corresponding optimality conditions are now:

V T
k

(
AT (AVkyk − b)− λk + µk

)
= 0,

λi([Vkyk]i − ℓi) = 0, i ∈ {1, . . . ,m}
µi(ui − [Vkyk]i) = 0, i ∈ {1, . . . ,m}

ℓi ≤ [Vkyk]i ≤ ui, i ∈ {1, . . . ,m}
λ ≥ 0 µ ≥ 0.

(4)

These are very similar to (2) but now the first equation is a projection of the residual onto the basis
Vk. The number of complementarity conditions is the same as in the original problem.

Residual Quadratic Programming Active Set Subspace (ResQPASS)). We are now in
a position to define the ResQPASS iteration. It solves a series of small projected optimalisation
problems that can be warm-started with the previous solution.

Definition 1. The residual quadratic programming active-set subspace (ResQPASS) [2] iteration
for A ∈ Rm×n, b ∈ Rm and ℓ, u ∈ Rn, lower and upper bounds such that ℓ ≤ 0 ≤ u with associated
Lagrange multipliers λk, µk ∈ Rn, generates a series of approximations {xk}k∈N that solve

xk = argmin
x∈span{r0,...,rk−1}

∥Ax− b∥22 subject to ℓ ≤ x ≤ u, (5)

where
rk := AT (Axk − b)− λk + µk. (6)

The feasible initial guess is x0 = 0, with λ0 = µ0 = 0 and r0 := −AT b.

The definition of the residual, (6), includes the current guess for the Lagrange multiplier λk and µk.
A non-zero Lagrange multiplier indicates where the solution in the subspace touches the bounds.
Note that the residual, as defined in Eq. (6), also appears in the first equation of the optimality
conditions, (2) and (4).
The restriction ℓ ≤ 0 ≤ u does not limit the applicability, we can use an initial guess x0 to shift to
problem such that this is satisfied.
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Algorithm 1 Residual quadratic programming active-set subspace (ResQPASS)
Require: A ∈ Rm×n, b ∈ Rm, ℓ, u ∈ Rn, tol > 0

1: r0 = AT b
2: V1 = r0/∥r0∥
3: y1 = 0
4: W1 = ∅
5: for k = 1, 2, . . . ,m do
6: y∗k,W∗

k , λk, µk ← Solve Eq. (4) using qpas, with initial guess yk and initial working set Wk

7: rk = AT (AVky
∗
k − b)− λk + µk

8: if ∥rk∥2 ≤ tol then
9: x = Vkyk, break;

10: end if
11: Vk+1 ←

[
Vk rk/∥rk∥

]
12: yk+1 ←

[
(y∗k)

T 0
]T

13: Wk+1 ←W∗
k

14: end for

This definition is translated in the algorithm described in Algorithm 1, which has a very similar
structure as Krylov subspace methods.
If we solve the system of the projected optimality conditions (4) only to feasibility (i.e., not all
Lagrange multipliers are positive), we obtain an orthogonal series of residuals rk. Indeed, the first
equation of (4) shows the current residual projected on the previous residuals. Thus, achieving
feasibility means that the current residual will be orthogonal to all previous residuals.
Another observation is that when the bounds, ℓ and u, do not restrict the problem (i.e none of
the bounds are active), the corresponding Lagrange multipliers µ and λ will be zero, due to the
complementarity conditions. In this case, the residual simplifies to the classical form AT (AVkyk−b),
as in LSQR or CG. The method ResQPASS will then corresponds to a classical Krylov method.
However, when there are active bounds, the residuals will differ — but not significantly. When
only a few bounds are active, the vectors of Lagrange multipliers are sparse, meaning that only a
few of the elements λi and µj are non-zero.
In figure 1, we studied model problems where the number of active constraints in the solution can
be adjusted. What we observe is that, in the initial iterations, progress is slow because the bounds
prevent a full step. However, once the limiting bounds are discovered, regular Krylov convergence
sets in due to the orthogonality of the residuals.
This observation is explained by a convergence analysis [2], which reveals that after a certain
number of iterations, the residuals can be expressed as polynomials of the normal matrix on some
subspace, p(ATA)V0. At this point, regular Krylov convergence occurs. This connection to Krylov
subspaces suggests superlinear convergence for problems with a small number of active constraints.

Numerical implementation. In the numerical implementation, we solve a series of QP problems
that grow in size. Similar to CG and GMRES, solving the next problem becomes easier if the
previous problem has already been solved. We can warm-start with the previous solution as the
initial guess, along with the working set from the previous problem. Additionally, the factorisation
of the saddle point system can be reused, as the active set changes one element at a time, and the
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Figure 1: This figure illustrates the convergence behavior for different number of active constraints.
The residual and objective behave similar to the unbounded (imax = 0, Krylov convergence) case,
with a delay that is roughly equal to imax, the number of active constraints in the problem. x̃ is
an ‘exact’ solution found by applying MATLAB’s quadprog with a tolerance of 10−15.

matrices only change by a rank-1 update.
We use a Cholesky factorization of the projected Hessian V T

k ATAVk or a orthogonalisation AVk = UkBk,
which gives asymptocally the bidiagonalisation. These factorisations ar efficiently updated as the
subspace expands. Similarly, in the inner QP iterations, we use a QR factorization of the Cholesky
factors applied to the active constraints, which further improves the efficiency.
By limiting the inner iterations we can choose to solve only for feasibility. In the early iterations,
it is beneficial to prioritize subspace expansion over achieving full optimality within each subspace.
This control over the number of inner iterations balances solution accuracy and speed. We also
incorporate additional recurrence relations to avoid redundant computations, similar to techniques
used in the CG method.
This results in an algorithm that performs very well in problems with a limited number of active
constraints such as contact problems, offering significantly faster convergence compared to tradi-
tional methods like interior-point methods. However, the performance degrades as the number of
active constraints becomes too large.
It is important to note that ResQPASS is a matrix-free method, as it primarily relies on matrix-
vector products, making it suitable for problems where explicit matrix storage is impractical.
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