
The Stability of Split-Preconditioned FGMRES in Four Precisions

Erin Carson, Ieva Daužickaitė

Abstract

We consider the problem of solving a linear system of equations Ax = b, where A ∈ Rn×n is
nonsymmetric and x, b ∈ Rn. When A is large and sparse, the iterative generalized minimal residual
method (GMRES) or its flexible variant (FGMRES) are often used. In these and other Krylov
subspace methods, preconditioning is an essential ingredient. Given a preconditioner P =MLMR,
the original problem is transformed to

M−1
L AM−1

R x̃ = M−1
L b, where M−1

R x̃ = x.

The emergence of mixed precision hardware has motivated work in developing mixed precision
algorithms for matrix computations; see, e.g., the recent survey [4]. Modern GPUs offer double,
single, half, and even quarter precision, along with specialized tensor core instructions; see, e.g.,
[5]. The use of lower precision can offer significant performance improvements, although this comes
at a numerical cost. With fewer bits, we have a greater unit roundoff and a smaller range of
representable numbers. The goal is thus to selectively use different precisions within algorithms
such that performance is potentially improved without adversely affecting the desired numerical
properties.
In this talk, based on the published work [3], we consider the split-preconditioned FGMRES method
in a mixed precision framework, in which four potentially different precisions can be used for com-
putations with the coefficient matrix A (unit roundoff uA), left-preconditioner ML (unit roundoff
uL), right-preconditioner MR (unit roundoff uR), and all other computations (unit roundoff u).
Our analysis is applicable to general preconditioners with minimal assumptions. Briefly, following
the strategy of [6], we assume that the application of M−1

L and M−1
R can be computed such that

fl(M−1
L wj) =M

−1
L wj +∆ML,jwj , |∆ML,j | ≤ c(n)uLEL,j ,

f l(M−1
R wj) =M

−1
R wj +∆MR,jwj , |∆MR,j | ≤ c(n)uRER,j ,

where fl(·) denotes the quantity computed in floating point arithmetic, EL,j and ER,j have positive
entries, wj ∈ Rn, and c(n) is a constant that depends on n only. Note that a particular strength
of FGMRES is that it allows the right preconditioner to change throughout the iterations; for
simplicity, we consider the case here where the preconditioners are static, although our results
could be extended to allow dynamic preconditioning.
We define Ã ≡ M−1

L A and b̃ ≡ M−1
L b and assume that matrix-vector products with Ã can be

computed so that
fl(Ãzj) = (M−1

L +∆ML,j)(A+∆Aj)zj .

Denoting

uAψA,j =
∥M−1

L ∆Ajzj∥
∥Ã∥∥zj∥

and uLψL,j =
∥∆ML,jAzj∥
∥Ã∥∥zj∥

,

where ∥ · ∥ denotes the 2-norm, and ignoring the second order terms, we can write

fl(Ãzj) ≈ Ãzj + fj , where ∥fj∥ ≤ (uAψA,j + uLψL,j)∥Ã∥∥zj∥.
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We first present general bounds on the backward and forward errors in split-preconditioned FGM-
RES, which is based on the previous works [1] and [2]. Our analysis provides guidance on how the
precisions should be set when the target backward error is of order u. To summarize, the precision
for applying ML must be chosen in relation to u, uA, and the required backward and forward
errors, because uL heavily influences the achievable backward error. We can be more flexible when
choosing uR as it does not influence the backward error directly. Our analysis holds under a suf-
ficient but not necessary assumption on uR in relation to MR. As long as MR is not singular in
precision uR (note that scaling strategies may be used to ensure this), setting uR to a low precision
is sufficient. Very low precisions uL and uR may delay the convergence, but setting uL ≤ u or
uR ≤ u does not improve the convergence in general. Note that these conclusions apply to the full
left- and right-preconditioning cases as well.
We observe that the forward error is determined by the backward error and the condition number
of the left-preconditioned coefficient matrix. This motivates concentrating effort on constructing an
appropriate left-preconditioner when aiming for a small forward error: the preconditioner should
reduce the condition number sufficiently and needs to be applied in a suitably chosen precision.
We further provide insights on which preconditioning strategy (left, right, or split) may be preferred
under certain objectives related to the desired the backward and forward errors. To summarize,
if a small backward error is the main concern and A is ill-conditioned, and we have a ‘good’
preconditioner, so that κ(Ã) is small and we can afford setting uA and uL to precisions that are high
enough to neutralize the ψA and ψL terms, then left-preconditioning should be used. If however,
we cannot afford setting uA and uL to high precisions but can construct a split-preconditioner
such that κ(ML) is small, then split-preconditioning (note that in this case ψA and ψL may be
smaller too) or full right-preconditioning may be preferential. If our main concern is applying the
preconditioner in lower than the working precision (which may be relevant, for example, when A
is very sparse and the preconditioner uses some dense factors), the bounds suggest that full left-
preconditioning should not be used as uAψA and uLψL may be large. Full right-preconditioning
may be most suitable in this case.
We present a suite of numerical experiments which support our theoretical results. Essentially,
the experiments confirm that the precision in which the left preconditioner is applied has a signifi-
cant effect on the forward and backward errors, but very little effect on the number of FGMRES
iterations required for convergence. Conversely, the precision in which the right preconditioner
is applied has almost no effect on the resulting forward and backward errors, but can affect the
FGMRES convergence.
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