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Abstract

Ensemble Kalman Inversion (EKI) methods are a family of iterative methods for solving weighted
least-squares problems of the form

min
v∈Rd

(y −H(v))⊤Σ−1(y −H(v)) = min
v∈Rd

∥y −H(v)∥2
Σ−1 , (1)

where Σ ∈ Rn×n is symmetric positive definite, and H : Rd → Rn. Such problems arise in many
settings, including in inverse problems in which v ∈ Rd represents an unknown parameter or state
of a system of interest which must be inferred from observed data y ∈ Rn. Inverse problems arise
in many disciplines across science, engineering, and medicine, including earth, atmospheric, and
ocean modeling, medical imaging, robotics and autonomy, and more. In large-scale scientific and
engineering applications, solving (1) using standard gradient-based optimization methods can be
prohibitively expensive due to the high cost of evaluating derivatives or adjoints of the forward
operator H. In contrast, EKI methods can be implemented in an adjoint-/derivative-free way.
This makes EKI an attractive alternative to gradient-based methods for solving (1) in large-scale
inverse problems.
We introduce a basic version of EKI from [4] in Algorithm 1, noting that other EKI methods can
be viewed as variations on this theme. In Algorithm 1, we use E and cov to denote the empirical
(sample) mean and covariance operators, respectively: given J ∈ N samples {a(j)}Jj=1 and {b(j)}Jj=1,
we define E[a(1:J)] = 1

J

∑J
j=1 a

(j), and

cov[a(1:J),b(1:J)] =
1

J − 1

J∑
j=1

(a(j) − E[a(1:J)])(b(j) − E[b(1:J)])⊤,

and cov[a(1:J)] = cov[a(1:J),a(1:J)]. Algorithm 1 prescribes the evolution of an ensemble of J

particles, {v(1)
i , . . . ,v

(J)
i }, initialized at i = 0 in some way, e.g., by drawing from a suitable prior

distribution, and subsequently updated for i = 1, 2, 3, etc. We emphasize that Algorithm 1 does not
require the evaluation of adjoints or derivatives of H. Those familiar with ensemble Kalman filtering
methods will recognize familiar elements in Algorithm 1. Indeed, one way to obtain Algorithm 1 is
to apply the ensemble Kalman filter to a system whose dynamics are given by the identity map in
the “forecast” step of the filter. The connection to the ensemble Kalman filter also motivates the
perturbation of the observations by random noise in Step 7; these perturbations ensure unbiased
estimates of the filtering statistics in the linear Gaussian setting.
There is a very rich literature developing both EKI methods and accompanying theory (see [3]
for an extensive survey). Variants of the basic method include the incorporation of a Tikhonov
regularization term into the least-squares objective function, the enforcement of constraints in
the optimization, or hierarchical, multilevel, and parallel versions of the algorithm. Beyond the
successful use of EKI for solving diverse inverse problems in the physical sciences, e.g., in geophysical
and biological contexts, EKI has also been used as an optimizer for training machine learning
models. In particular, the use of EKI for training neural networks has motivated the development of
EKI variants based on ideas used for gradient-based training of neural networks, including dropout,
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Algorithm 1 Basic Ensemble Kalman Inversion (EKI)
0: Input: forward operator H : Rd → Rn, initial ensemble {v(1)

0 , . . . ,v
(J)
0 } ⊂ Rd, observations

y ∈ Rn, observation error covariance Σ ∈ Rn×n

1: for i = 0, 1, 2, . . . , do
2: Compute observation-space ensemble: h

(j)
i = H

(
v
(j)
i

)
, j = 1, 2, . . . , J .

3: Compute empirical covariances: cov[v(1:J)
i ,h

(1:J)
i ] and cov[h(1:J)

i ]

4: Compute Kalman gain: Ki = cov[v(1:J)
i ,h

(1:J)
i ] ·

(
cov[h(1:J)

i ] +Σ
)−1

5: Sample ε
(j)
i i.i.d. from N (0,Σ) for j = 1, 2, . . . , J .

6: Perturb observations: set y
(j)
i = y + ε

(j)
i for j = 1, 2, . . . , J .

7: Compute particle update: v
(j)
i+1 = v

(j)
i +Ki(y

(j)
i −Hv

(j)
i ) for j = 1, 2, . . . , J .

8: if converged then
9: return current ensemble mean, E[v(1:J)

i+1 ]

This is Stochastic EKI. For Deterministic EKI, skip 5-6 and assign y
(j)
i = y in 7.

data subsampling (also called ‘(mini-)batching’), adaptive step sizes, and convergence acceleration
with Nesterov momentum.
Theoretical analyses of EKI convergence behavior have mostly considered linear observation oper-
ators H ∈ Rn×d, for which the standard norm-minimizing solution of (1) is given by

v∗ = (H⊤Σ−1H)†H⊤Σ−1y ≡ H+y, (2)

where “†” denotes the usual Moore-Penrose pseudoinverse and we have introduced the weighted
pseudoinverse, H+ = (H⊤Σ−1H)†H⊤Σ−1. Previous analyses of linear EKI have largely considered
mean-field limits (equivalent to an infinitely large ensemble) [3] or continuous-time limits of the
EKI iteration, in which the deterministic iteration becomes a system of coupled ordinary differential
equations (ODEs) [2, 6] and the stochastic iteration becomes a system of coupled stochastic dif-
ferential equations (SDEs) [1]. These continuous-time analyses have shown that the EKI ensemble
covariance collapses at a rate inversely proportional to time [6, 1, 2], meaning that the residual of
the EKI iteration (with respect to the final solution) converges at a 1/

√
i rate. These analyses have

also characterized EKI solutions either by assuming H is one-to-one or by assuming the ensemble
covariance is full rank. In particular, the works [6] show that if H is one-to-one, then EKI converges
to the pre-image of the data restricted to the span of the ensemble [6, 1]. On the other hand, the
work [2] shows that if the ensemble covariance is full rank (and H may be low-rank), then EKI
converges to the (non-standard) minimizer of (1) closest to the initial ensemble mean in the norm
induced by the initial ensemble covariance. The characterization of EKI solutions in the general
case where both H and the ensemble covariance may be low-rank, and the relationship between EKI
solutions and the standard minimum-norm least-squares solution (2), are open questions addressed
in this work.
In this work, we provide a new analysis of EKI for linear observation operators H ∈ Rn×d which
directly considers the discrete iteration for a finite ensemble, relying principally on linear algebra as
an analysis tool. Our analysis yields new results relating EKI solutions to the standard minimum-
norm least-squares solution (2), together with a new and natural interpretation of EKI convergence
behavior in terms of ‘fundamental subspaces of EKI’, analogous to the four fundamental subspaces
characterizing Strang’s ‘fundamental theorem of linear algebra’ [7], which we now review.
Strang’s four ‘fundamental subspaces of linear algebra’ arise from dividing observation space Rn
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and state space Rd into two subspaces each, one subspace associated with ‘observable’ directions
and a complementary subspace associated with ‘unobservable’ directions [7]. That is, in observation
space Rn, the two fundamental subspaces are:

1. Ran(H) (denoting the range of H), and
2. Ker(H⊤Σ−1) (denoting the null space of H⊤Σ−1), the Σ−1-orthogonal complement to Ran(H).

In state space Rd, the two fundamental subspaces are:
1. Ran(H⊤), and
2. Ker(H), the orthogonal complement to Ran(H⊤) with respect to the Euclidean norm.

The standard minimum-norm solution (2) to the linear least-squares problem (1) can be understood
in terms of these fundamental subspaces as follows (see [5, Figure 1]): in observation space Rn, the
closest that Hv can come to y ∈ Rn with respect to the Σ−1-norm is the Σ−1-orthogonal projection
of y onto the observable space Ran(H), which then has a zero component in the (unobservable)
subspace Ker(H⊤Σ−1). In state space Rd, directions in Ker(H) are unobservable because they are
mapped by H to zero and thus do not influence the minimand of (1). If Ker(H) is non-trivial,
multiple minimizers of (1) exist. The unique norm-minimizing solution (2) lies in the observable
space Ran(H⊤) and has a zero component in the unobservable space Ker(H).
Our analysis reveals that EKI solutions to the weighted least squares problem admit a similar in-
terpretation in terms of fundamental subspaces of EKI. However, the EKI fundamental subspaces
arise first from dividing the state and observation spaces into directions that are ‘populated’ by
particles, lying in the range of ensemble covariance Γi (it is well-known [1, 2, 4, 6] that Ran(Γi)
is invariant for all i), and ‘unpopulated’ directions lying in a complementary subspace. The pop-
ulated subspace can then be further divided into two subspaces associated with observable and
unobservable directions. There are therefore three subspaces in each of the observation and state
spaces. In observation space Rn, the three fundamental subspaces of EKI are associated with three
complementary oblique projection operators, P ,Q,N ∈ Rn×n. These projections are defined via a
spectral analysis of the iteration map which governs the evolution of the data misfit, Hv

(j)
i − y, so

that the range of each projector is an invariant subspace under the misfit iteration map. The three
fundamental subspaces of observation space Rn are then

1. Ran(P) ≡ Ran(HΓi), associated with observable populated directions,
2. Ran(Q) ≡ HKer(ΓiH

⊤Σ−1H), associated with observable but unpopulated directions, and
3. Ran(N ) ≡ Ker(H⊤Σ−1), associated with unobservable directions.

In state space Rd, the three fundamental subspaces of EKI are also associated with three comple-
mentary oblique projection operators, P,Q,N ∈ Rn×n. These projections are defined via a spectral
analysis of the iteration map which governs the evolution of the least squares residual, v(j)

i − v∗.
The range of each projector is again an invariant subspace under the residual iteration map. The
three fundamental subspaces of state space Rd are then

1. Ran(P) ⊂ Ran(Γi), associated with observable populated directions (but generally not simply
the intersection of Ran(Γi) with Ran(H⊤)),

2. Ran(Q) ⊂ Ran(H⊤), associated with observable unpopulated directions, and
3. Ran(N), associated with unobservable directions.

The fundamental subspaces of EKI are depicted in [5, Figure 2], and an interactive three-dimensional
visualization is available at https://elizqian.github.io/eki-fundamental-subspaces/.
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We show that EKI misfits [residuals] converge to zero at a 1/
√
i rate in the fundamental subspace

associated with observable and populated directions, Ran(P) [Ran(P)], and remain constant in the
fundamental subspaces associated with observable unpopulated directions, Ran(Q) [Ran(Q)]. The
misfits [residuals] also remain constant in the unobservable directions, Ran(N ) [Ran(N)]. Numerical
experiments illustrating these results may be found in [5, Figure 3]. Our results verify for the
discrete iteration and finite ensemble case the 1/

√
i convergence rate previously shown in continuous

time or infinite ensemble limits, and provide the first results describing the relationship between
EKI solutions and the standard minimum-norm least squares solution (2).
Our analysis sheds light on several directions of interest for future work connecting EKI with
classical iterative methods. Because we have shown that the convergence behavior of deterministic
EKI can be characterized in terms of an evolving spectral problem that has invariant subspaces
that are independent of iteration index, this allows for straightforward EKI acceleration strategies
analogous to overrelaxation schemes in classical stationary iterative methods. Other potential
directions of interest could exploit the well-known connection between the extended Kalman filter
and Gauss-Newton methods to establish further connections between EKI and classical methods.
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