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Abstract

For the better part of my life I have taught that least squares problems are to be solved with a
QR decomposition or SVD, cautioning that formation of the normal equations is to be avoided if
possible.

Now I am re-thinking this advice, in light of developments underlying the Blendenpik least squares
solver [1, 2], and our version of the randomized preconditioned Cholesky-QR algorithm [3].

Proposed Algorithm. Given a real m x n matrix A with rank(A) = n, we investigate the solu-
tion of the least squares problems miny || Ax — b|[2 by solving the normal equation of a randomized
preconditioned problem. In the spirit of the original Householder meetings, this is work in progress.

Specifically, we right-precondition A with a randomized preconditioner Ry, to obtain A; = AR .
Instead of taking the Blendenpik route and solving miny ||[A1y — b2 via the iterative method
LSQR, we solve the normal equations. That is, the Gram matrix G = AT A; is formed explicitly,
followed by solution of the normal equations Gy = A¥b. This can be done with a Cholesky
factorization of G or of the bordered matrix [A; b] [4, §2.2]. At last, one recovers the solution of
the original problem via the triangular solve Rgzx =y.

To compute the randomized preconditioner Ry, first improve the coherence of A with a random
orthogonal matrix FA, where F is the product of a fast transform (FFT, Walsh-Hadamard, DCT,
Hartley) and a random diagonal matrix with independent Rademacher variables on the diagonal.
Then sample ¢ rows, uniformly and independently with replacement from FA to obtain the sampled
matrix A; = SFA. At last compute the thin QR decomposition A; = QsRs5.

Advantages. Unlike Blendenpik [1] which solves a m x n least squares problem with an iterative
method, we solve a small n X n problem with a direct method. Direct methods, and Cholesky
decompositions in particular, tend to perform well on cache-based and parallel architectures, where
data movement and synchronization can dominate arithmetic. This is in contrast to the normal
equations like approach with iterative methods in [5, 6], which also requires an initial guess.

The simplicity of our approach, in contrast to the involved multi-stage [5, Algorithm 4], will lead
to a rigorous and informative perturbation analysis for the accuracy of the computed solution. The
potential backward stability issues due to the formation of the Gram matrix can be handled in the
same way as for the randomized Cholesky-QR algorithm in [3].

The preconditioner R needs to be applied only once and is applied explicitly, thereby improving
the backward stability issues discussed in [7]. Even for matrices A with worst case coherence and
a condition number x(A) =~ 10!, a sampling amount of ¢ = 3n suffices to produce preconditioned
matrices A that are very well conditioned, with condition numbers k(A1) ~ 10.

Preliminary numerical results suggest that for matrices with condition number x(A) < 10%, the
preconditioner R can be computed faster, in single precision, without loss of accuracy in the pre-
conditioned problem. We will show that solving the normal equations via a Cholesky decomposition
represents an efficient least squares solver on NVIDIA RTX 2080 GPUs.
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