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We study new matrix based computations for a recent cluster of extraordinary results
in six distinct branches of mathematics that are inter–connected in multiple multi-
dimensional ways. The first quoted paper deals with fractional ordinary differential
equations and the proportional secting method for accelerating terminal value problems
therein by a factor of around 8. Then we study how a century old and previously unsolved
quantum physics problem can be solved by using the hermitean Johnson F(t) function of
field of values computations. In quantum physics terms, this solution makes an assessment
of our Chemical Element Tables finally possible after 100 + years of not knowing. Then
we study accurate and fast computations of field of values boundary curves, even for
decomposable matrices. This was impossible before and has been abandoned for several
years now. To solve the unitary block decomposition problem for general square matrices
we use a discretized predictive Zhang Neural Network method for the resulting Johnson
block Fj(t) field of values functions. Overall the computational methods in this cluster
are all conditionally stable and none is just backward stable. They all give us highly
accurate results such as adapted ZNN methods for matrix flow A(t) problems that find
nonsingular static matrix A symmetrizers with small condition numbers for the first time.
A detailed survey of Zhang Neural Networks details their seven step set-up process for
the first time, giving ten matrix flow example derivations of this new process. B O X
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An Introduction – of sorts
For general complex or real 1-parameter matrix flows A(t)n,n or for static
matrices Athis paper considers ways to decompose matrix flows A(t) or sin-
gle matrices An,n globally via one constant hermitean matrix similarity Cn,n as

A(t) = C−1 · diag(A1(t), ..., Aℓ(t)) · C
or

A = C−1 · diag(A1, ..., Aℓ) · C.

Here each diagonal block Ak(t) or Ak is square and their number ℓ exceeds 1
– if this is possible.
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The theory behind our proposed algorithm is elementary and uses the con-
cept of invariant subspaces for the MATLAB eig computed ‘eigenvectors’ of
another associated flow matrix B(ta) to find the coarsest simultaneous block
structure for all flow matrices B(tb) and consequently block-diagonalizes the
given matrix flow A(t) or the given static matrix A itself.
The method works in O(n2) time for all matrices An,n and all matrix flows
A(t), be they real or complex, normal, with Jordan structures or repeated
eigenvalues, and differentiable, continuous, or discontinuous.
We aim to discover unitarily diagonal-block decomposable matrices
and flows from sensor given data. For unitarily block-diagonalisable A or
A(t), the complexity of their numerical treatment decreases swiftly for O(n3)
matrix processes when working on each of their diagonal blocks separately.

The proof : The Unitary Block-Decompositions and
Fast and Accurate Field of Values Boundary Computations
of all Square Matrices
The unitary block decomposition of matrix flows or single square matrices
has never been resolved by algebraic means in 100 + years. Our new way of
testing and establishing unitary decomposability of a matrix flow or a static
matrix hinges on a numerical algorithm that decides the lay of the near zero
entries and of the sizable ones in the hermitean Johnson matrix flow

F(t) = cos(t)H+ sin(t)K
for 0 ≤ t ≤ 2π.
[ We assume today that all matrices and matrix flows are real in this talk. ]
The algorithm starts from two linear independent Johnson flow matrices F(t1)
and F(t2). We form the 0-1 logic matrices Flogic(t1) and Flogic(t2) in Mat-
lab’s spy function and assemble the normalized eigenvectors of F(t1) in V ′(t1)
so that adjacent rows in Flogic(t1) have equal 0 and 1 patterned blocks.
We reorder the rows of Flogic(t2) so that they have the same 0-1 pattern as
Flogic(t1) by using a combinatorial algorithm that establishes a joint proper
unitary block decomposition of both logic 0-1 spy pattern matrices.
Going down from the top block leads to a joint unitary block diagonal struc-
ture for all F (t) with t ∈ [0, 2π]. Since F (0) = H and F (π/2) = K, the
matrix A or the flow A(t) have the same unitary block structure as the her-
mitean matrices F (t1) and F (t2) do, and our algorithm is complete.
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This algorithm depends on the magnitude relations between the non-zero en-
tries and the near zero entries in F (ti). To distinguish between computed
entries as being ’zero’ or definitely ’nonzero’ is a an uncharted question. We
have set the ’zero’ threshold heuristically to ∥A∥fro · 10−13 ≈ ∥A∥fro · eps
when working in double precision in Matlab.

To prove the main Unitary Diagonability Theorem, we assume that
the hermitean Johnson flow F (t) contains two linearly independent matri-
ces F (ta) ̸= F (tb) where F (t) = cos(t)H + sin(t)K for the hermitean and
skew parts H = (A+ A∗)/2 = H∗ and K = (A− A∗)/(2i) = K∗ of A.
We know of no way to prove the unitary block-diagonalization theorem al-
gebraically; an algebraic proof of our result was never attempted. An al-
gorithmic proof was nearly impossible before the advent of computers and
the understanding of matrix flows such as the Johnson flow F(t) and of the
predictive qualities and accuracy of Zhang Neural Networks.
The ability to construct the field of values F (A) boundary curve of some uni-
tarily decomposable matrices quickly and accurately via shooting methods led
to recent further studies of matrix eigencurve behavior by many who tried to
locate their crossings or hyperbolic avoidances that had first appeared in orig-
inal Quantum Physics studies in Copenhagen, Berlin and Göttingen in the
1920s. Albert Einstein shunned this fundamental Quantum Theory problem
and rather worked on relativity. Bohr’s group wanted to understand eigen-
curve crossings and their relation to the unitary matrix block-decomposability
of matrices, but neither succeeded.
Eigencurve crossing studies for the unsolved unitary block-diagonalization
problem began anew with Charlie Johnson’s work on the field of values in the
1970s and advanced in the 1990s in Luca Dieci et al’s, Loisel and Maxwell’s,
and my eigencurve papers. By 2020 several small sub-results of the unitary
block-decomposition problem had been solved, but no complete classification
had been found and the century old problem was still open in 2023.
Our final classification of unitary block-decompositions for both, general ma-
trix flows and static matrices, was inspired by Yunong Zhang’s parameter-
varying Neural Networks that date back to his doctoral thesis of 2001.
These recent developments are inter-woven and all have contributed to each
other’s solution and to the author’s understanding of this cluster’s new fun-
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damental computational results. Each of the new results has advanced its
area tremendously where no math methods had been found for decades, by re-
searchers that relied on standard mathematical or computational approaches.
The mathematical process and its results were never predictable – until ev-
erything fell into place in 2023/24, was mathematically sound, proved, and
their papers quickly accepted.
The conditionally stable Matrix Computational algorithms of this research
cluster deliver highly accurate results at high speed and they do not suf-
fer from the inaccuracies of our the traditional ’backward stable’ methods

This is the end of my math talk with selections from
the new extraordinary mathematical research cluster.
What is our most urgent task today, in Lin-
ear Algebra and Matrix Theory, teaching and
research wise ?
What needs to be done immediately ?
We must modernize our early College teachings in Linear Algebra and
enliven this area of Mathematics that helps us all so extraordinarily
in our daily cell-phone and internet based lives and in our AI and
engineering advances.
How do we, how do you mostly teach beginners’ linear algebra
classes today?
Which subjects do we, you, and I teach?
Using modern Matrix Theory based ideas or from a classical and algebraic
standpoint ?
Top-down taught or taught interactively ? That is the question

Math Education : the Necessity of Moderniz-
ing the First Linear Algebra Course via coher-
ent Matrix Theory Based Lesson Plans
This is the subject of a serious Math Education session, some time late at
night, in Ithaka. All are welcome
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