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Abstract

The design of efficient and reliable algorithms for computing the eigenvalues and eigenvectors of a
matrix is of unquestionable importance in both science and engineering. However, despite significant
advancements in various practical aspects, fundamental theoretical questions about the eigenvalue
problem remain poorly understood. In this talk I will discuss work [BGVSa, BGVSb, BGVSc] that
provides nearly optimal rigorous guarantees, on all inputs, for the shifted QR algorithm. Similar
results were established by Wilkinson in [Wil68] and Dekker and Traub in [DT71] for Hermitian
inputs; however, despite sustained interest and several attempts, the non-Hermitian case remained
elusive for the last five decades.

The QR iteration. The QR algorithm, which originated in the works of Francis [Fra61, Fra62]
and Kublanovskaya [Kub62] (see [GU09] for some history), has been listed as one of the top ten
most influential algorithms of the 20th century [DS00] and is the preferred method for computing
the full eigendecomposition of an arbitrary input matrix.
In its simpler form, the QR algorithm starts by putting the input matrix A ∈ Cn×n into Hessenberg
form, that is, it computes a unitary matrix U such that H = U∗AU is an upper Hessenberg matrix.1
Then, it computes a sequence of Hessenberg matrices H0 = H,H1,H2 . . . via the iteration:

[Qt, Rt] = qr(Ht), (1)
Ht+1 = Q∗

tHtQt.

Where QtRt = Ht is the QR decomposition of Ht, and from Ht+1 = Q∗
tHtQt we see that

A = UtHtU
∗
t for Ut = UQ0 · · ·Qt.

This iteration has the fascinating property (see [Wat82]) that for generic2 inputs A, as t goes to
infinity, the Ht converge to an upper triangular matrix, say, T . In such situation, we can set
V = limt→∞ Ut, so that

A = V TV ∗,

therefore obtaining the Schur decomposition of A.3 The appeal of this method resides on the
simplicity of the iteration described in (1). The drawback is that the convergence Ht → T happens
at a prohibitively slow rate for most inputs, ultimately turning it into an impractical algorithm.

The shifted QR algorithm. In practice the QR iteration is endowed with “shifts” that seek to
accelerate convergence. Concretely, at each time t, a polynomial pt(z) is computed as a function of
Ht (see Wilkinson’s shift below for an example) and the iteration now is given by:

[Qt, Rt] = qr(pt(Ht)), (2)
Ht+1 = Q∗

tHtQt.

1This can be done by applying a sequence of n− 1 suitably chosen Householder transformations. This procedure
is numerically stable and can be executed in O(n3) arithmetic operations, see [Wat08] for details.

2That is, all but a set of Lebesgue measure zero.
3Recall that one can read the eigenvalues of A from the diagonal entries of T , and if desired, easily compute the

eigenvectors of A from the columns of V .
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Intuitively, one should think of the roots of pt(z) as “guesses” for the eigenvalues of Ht (which by
unitary equivalence are the same as the eigenvalues of A) and, the better the guesses the more
progress towards convergence one will make while going from Ht to Ht+1. Moreover, the closer
Ht is to an upper triangular matrix, the more its eigenvalues have been “revealed”, which allows
one to make better guesses, all together yielding a virtuous cycle that is in part responsible for
the undefeated performance of the shifted QR algorithm. This intuition can be made rigorous
by understanding the connection between the shifted QR algorithm and shifted inverse iteration
[Wat82, Wat08], where the aforementioned “virtuous cycle” can be established via a local analysis
of convergence, e.g. see [Par74] or [Par98, §4.7].
The chosen algorithm for computing the pt(z) as a function of the Ht is refered to as the shifting
strategy, and the main purpose of any shifting strategy is to guarantee rapid global convergence,
that is, rapid convergence to an upper triangular matrix regardless of the starting condition H0.
Although local convergence is intuitive (as explained above) and typically easy to establish, devising
a shifting strategy that ensures rapid global convergence remained an important open problem
throughout the years [Par74, Mol78, Dem97, Sma97, HDG+15].

Exploiting the Hessenberg structure. Working with Hessenberg matrices has several com-
putational advantages that ultimately permit obtaining the full eigendecomposition of the input in
nearly n3 operations, which is the initial cost of putting the input matrix into Hessenberg form.
Easy deflation. In practice, one can only hope to compute an approximate Schur form (resp.
approximate eigedecomposition) for the input matrix. In turn, when seeking to solve the an ap-
proximate version of the eigenvalue problem, one can exploit the Hessenberg structure to accelerate
the algorithm as follows. We will say that an upper Hessenberg matrix H is δ-decoupled if one of
its subdiagonals satisfies |H(i, i− 1)| ≤ δ∥H∥. So, in the iteration (2), once one of the matrices Ht

is δ-decoupled for some δ small enough, one can zero out the small subdiagonal:
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 small ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 −→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .

This procedure, called deflation, incurs a small error in the computation but has the advantage that
the resulting matrix is now block upper triangular, and therefore the spectrum of the big matrix is
the union of the spectra of each of the smaller block diagonal parts, which happen to again have
a Hessenberg structure. Moreover, the eigenvectors of the big matrix can be related in a similar
way to the eigenvectors of the smaller diagonal blocks. With this, the eigenvalue problem has been
reduced to two subproblems of smaller dimension, on which one can again call the QR algorithm.
Implicit shifts. Another advantage of the Hessenberg structure is that in the iteration (2) one can
compute Ht+1 from Ht without having to explicitly compute pt(Ht). Concretely, if pt(z) is of degree
k and Ht is of dimension n, one can compute Ht+1 from Ht in O(kn2) operations using a procedure
commonly known as chasing the bulge (see [Tis96] or [Wat08]). Moreover, when the input matrix
is Hermitian, the iterates Ht are tridiagonal, and in this case Ht+1 can be computed from Ht in
O(kn) operations.
Meaningful corners. If H is a normal upper Hessenberg matrix then the lower-right corners of H
can be related to the orthogonal polynomials associated to a natural probability measure supported
on the spectrum of H, and, there is a natural potential theory interpretation of the subdiagonals
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of such corners. In the general non-normal case these interpretations are no longer valid, but still
provide great intuition for the dynamics of the shifted QR algorithm. In part, this is the reason
why many of the shifting strategies use small lower-right corners of the Ht to compute pt(z).

Previous theoretical guarantees. When the input A ∈ Cn×n is Hermitian, and therefore
all the iterates Ht are too, Wilkinson introduced a shifting strategy that guarantees rapid global
convergence. At time t, Wilkinson’s shift computes the two eigenvalues of the lower-right 2 × 2
matrix of Ht and takes the one (call it wt) that is closest to Ht(n, n) to then set pt(z) = z − wt.
In [Wil68] Wilkinson proved that for any initial Hermitian H0 , if one runs the iteration (2) using
his shifting strategy, it holds that limt→∞Ht(n, n− 1) = 0, which in particular implies that for any
δ > 0, the matrix Ht is δ-decoupled once t is large enough. This was then revisited by Dekker and
Traub [DT71] who obtained a rate of convergence for Wilkinson’s shift by showing that

|Ht+1(n, n− 1)2Ht+1(n− 1, n− 2)| ≤ |Ht(n, n− 1)2Ht(n− 1, n− 2)|√
2

, for all t ≥ 0. (3)

In particular, this implies that for any δ > 0, δ-decoupling occurs in O(log(1/δ)) iterations. Com-
bining this with the deflation technique and the implicit shifts described above, one gets that any
Hermitian matrix can be fully diagonalized to accuracy δ in O(n3 + log(1/δ)n2) operations.
The case in which the input matrix A ∈ Cn×n is unitary was later solved by Eberlein and Huang
[EH75] and Wang and Gragg [WG02]. When H0 is unitary the Wilkinson shift is no longer guar-
anteed to eventually produce decoupling. In fact, if the Wilkinson shift is used it can occur that
H0 = H1 = H2 = · · · , and similarly many other natural shifting strategies have certain unitary
matrices as fixed points (see [Par66]). The insight of Eberlein and Huang [EH75] was that these
commonly used shifting strategies could be combined with an exceptional shift that avoids stagna-
tion. In essence, their idea was to choose a main shift (e.g. one could choose the Wilkinson shift),
and then exploit the knowledge that the input matrix is unitary to identify fixed points for the
main shift, to then scape them by invoking the exceptional shift whenever necessary. Later, Gragg
and Wang [WG02] revisited this idea and showed that, on unitary inputs, a mixed strategy that
combines the Wilkinson shift and an exceptional shift satisfies a more complicated version of (3).
Their analysis implies that this mixed strategy achieves δ-decoupling in O(log(1/δ)) iterations,
ultimately implying that any unitary input can be diagonalized to accuracy δ in O(log(1/δ)n3)
operations.
Beyond Hermitian and unitary matrices not much was known and proving rapid global convergence
was open even in the normal case. We refer the reader to [BGVSa, §1.2] for a comprehensive
literature review.

The main result. In the series [BGVSa, BGVSb, BGVSc] we introduced a shifting strategy that
provably achieves global rapid convergence (in the space of all matrices). Hereon, if all the pt(z) in
a shifting strategy are of degree k we will say that the shifting strategy is of degree k.
The condition number of the eigenvector matrix turned to be a fundamental quantity in our analysis.
To be precise, if A ∈ Cn×n is diagonalizable, define

κV (A) = inf
V :A=V DV −1

∥V ∥∥V −1∥,

where ∥ · ∥ denotes the operator norm and the infimum runs over all diagonalizations of A. Note
that when A is normal one has κV (A) = 1 and when A is non-diagonalizable the convention is
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that κV (A) = ∞, so κV (·) can be viewed as a measure of non-normality. Fundamentally, [BGVSa]
proves the following.4

Theorem 1. For every positive integer k, there exists a shifting strategy of degree k that is ensured
to achieve δ-decoupling in log(1/δ) iterations provided that the starting matrix H0 satisfies

log(1 + κV (H0)) · log
(
1 + log(1 + κV (H0))

)
≤ ck, (4)

where c > 0 is some absolute constant.
In some sense, our analysis articulates that the complexity of shifted QR is tied to κV of the input. In
particular, the above theorem implies that rapid global convergence on normal matrices is possible
using a shifting strategy of degree O(1), just as in the case of Hermitian and unitary matrices.
In contrast, when the input is non-diagonalizable the strategy needed is “infinitely complex” and
the theorem becomes vacuous. That said, the latter situation can be addressed using an idea
from smoothed analysis [ST04] which in the context of the eigenvalue problem can be traced back
to Davies [Dav08]. In short, to obtain guarantees for arbitrary inputs, instead of running the
algorithm on the original input matrix A ∈ Cn×n we run it on A + γGn, where γGn is a tiny
random perturbation of A. One can then invoke results from random matrix theory (e.g. from
[ABB+18, BKMS21, BGVKS24, JSS21]), which for example imply that if Gn is a normalized n×n
Ginibre matrix5, ∥A∥ ≤ 1, and γ > 0, with high probability

κV (A+ γGn) ≤
n4

γ
. (5)

Certainly, this preprocessing random perturbation incurs an error in the computation (just as the
deflation step does), but if the scale of γ is chosen appropriately, it will not preclude one from being
able to obtain an accurate approximate version of the eigenvalue problem. Then, putting (4) and
(5) together, in [BGVSb] we were able to show that a randomized version of the QR algorithm can
diagonalize any input matrix A ∈ Cn×n with accuracy δ in O(n3 log(n/δ)2 log log(n/δ)2) operations.

Our shifting strategy. As in [DT71] and other works that served as inspiration (e.g. [Bat94]), we
used the lower subdiagonal entries of the iterates Ht to keep track of progress towards convergence.
Specifically, to analyze the shifting strategy of degree k mentioned in Theorem 1, we used the
potential function ψk which on a Hessenberg matrix H is defined as

ψk(H) = |H(n, n− 1)H(n− 1, n− 2) · · ·H(n− k + 1, n− k)|
1
k .

Then, as in [EH75, WG02], we used a mixed strategy consisting of a main shift and an exceptional
shift. If at time t an iteration with the main shift did not satisfy that ψk(Ht+1) ≤ .8ψk(Ht) (i.e.
if progress is not being made), then our shifting strategy recomputes Ht+1, this time using the
exceptional shift, and in [BGVSa] we show that provided that κV of the input matrix satisfies the
bound (5) the exceptional shift does succeed in guaranteeing ψk(Ht+1) ≤ .8ψk(Ht). Our mixed
strategy then guarantees a geometric decrease of the quantity ψk(Ht), which in turn implies that
δ-decoupling will occur after O(log(1/δ)) iterations.

A final caveat. Our theoretical algorithm is not a prescription for practitioners and does not
seek to replace the current very efficient LAPACK routines, which have been fine-tuned over the

4This theorem was not stated verbatim and strictly speaking only k’s that are powers of 2 were treated in the
paper, however, the ideas in [BGVSa] yield, with very little extra work, the theorem stated here.

5That is, and n× n matrix with i.i.d. complex Gaussian entries of variance 1
n
.
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decades and for which several patches have been added to avoid convergence failures. We do
warn the reader however, that such routines are by now quite sophisticated and do not come with
theoretical guarantees. This does make one wonder if there is an algorithm that is as efficient as
the existing implementations, but that is conceptually simple and for which one can give rigorous
guarantees.
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