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Abstract
A central question in numerical analysis is the following: how do the eigenvalues and eigenvectors
of a matrix behave under perturbations of its entries? For Hermitian matrices, the eigenvalues
are 1−Lipschitz functions of the entries, and the eigenvectors are stable under perturbations if
the minimum eigenvalue gap is large. This fact is essential to the rapid convergence and rigorous
analysis of algorithms for the Hermitian eigenvalue problem and its cousins.
For non-Hermitian matrices, two related difficulties appear: non-orthogonality of the eigenvectors
and spectral instability, i.e. high sensitivity of the eigenvalues to perturbations of the matrix en-
tries. Non-orthogonality slows down the convergence of iterative algorithms (such as the power
method) and spectral instability makes it difficult to rigorously reason about convergence in the
presence of roundoff error. The main tool used to surmount these difficulties in recent years is
smoothed analysis, i.e., adding a small random perturbation to the input and solving the per-
turbed problem, incurring a small backward error. Specifically it was shown in [BGVKS23] that
adding small i.i.d. complex Gaussian random variables to each entry of a matrix produces a matrix
with well-conditioned eigenvectors and a large eigenvalue gap, a phenomenon termed “pseudospec-
tral shattering”. This was then generalized to other random variables in [BVKS20, JSS20], and
is currently an essential mechanism in all of the known convergence results about diagonalizing
arbitrary dense matrices. Crucially, however, all current work examines the setting where i.i.d.
noise is added to every single entry of a given matrix.

This paper asks if it possible to achieve pseudospectral shattering by adding noise to
only a subset of entries, selected at random. We provide a positive answer.

In fact, we show only O(n log2(n)) entries need to be perturbed to achieve sufficient regularization
for many downstream algorithmic tasks. Our results are phrased in terms of the sparsity ρ = ρ(n) of
the added noise. In our model, each entry of a given matrix M is perturbed by a complex Gaussian
g with probability ρ, and left unchanged otherwise. As one might expect, our guarantee provides
stronger regularization the larger ρ is. We measure regularization in terms of the eigenvector
condition number κV (A) and minimum eigenvalue gap η(A). In the following definitions of these
quantites, A = V DV −1 is any diagonalization of A and λ1(A), . . . , λn(A) are the eigenvalues of A.

κV (A) = inf
A=V DV −1

∥V −1∥ ∥V ∥ and η(A) = min
i ̸=j

|λi(A)− λj(A)|.

Given a matrix M , the perturbation described above has the form M +Ng, where the entries of Ng

are i.i.d. copies of δ · g where δ ∼ Bernoulli(ρ) and g ∼ N (0, 1C). Our main theorem is as follows.

Theorem 1. Set K = 2 log(n)/ log(nρ). For any M ∈ Cn×n, if nρ = Ω(log(n) log(∥M∥+n)) then

Pr
(
κV (M +Ng) ≥ (∥M∥+ n2ρ)10K

)
≤ O

(
n−K

)
, (1)
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and

Pr
(
η(M +Ng) ≤ (∥M∥+ n2ρ)−35K

)
≤ O

(
n−K

)
. (2)

The proof of this theorem consists of three steps. In the first two steps, A can be any random
matrix. In the third step, we need our particular model of sparse perturbations, A = M +Ng.

1. Bootstrapping: An important object related to spectral stability is the ε-pseudospectrum of
A, defined as

Λε(A) = {z ∈ C : σn(z −A) ≤ ε}.

It always contains disks of radius ε around each eigenvalue; equality is achieved if and only if A
is a normal matrix, i.e. κV (A) = 1. For less well conditioned matrices, the ε-pseudospectrum will
be larger. A quantifiable version of this statement relates the area of the pseudospectrum to both
κV (·) and η(·). The bootstrapping argument of [JSS20] turns this observation into a probabilistic
tail bound: a strong upper bound on E vol Λε(A) and a lower tail bound on η(A) establishes an
upper tail bound on κV (A). We adapt their argument and improve it by dramatically lessening
the control on E vol Λε(A) required for the argument to go through. The ideal control would be of
the form

E vol Λε(A) ≤ poly(n) · ε2.

The bootstrapping argument of [JSS20] shows that it suffices to have ε2 log(1/ε) in place of ε2. We
show it suffices to have εc + exp(−n) for any constant c > 0 in place of ε2.

2. Reduction to bottom two singular values: This step relies on known arguments which
were also used in [BKMS21, BGVKS23]. The previous step shows we need control over E vol Λε(A)
and η(A). As may be clear from the definition, E vol Λε(A) is immediately convertible to lower tail
estimates for the least singular value σn(z−A) for z ∈ C. We also show a lower tail bound on η(A)
can be reduced to lower tail bounds on the bottom two singular values σn(z −A), σn−1(z −A).
The strength of the tail bound can be characterized in terms of the power cm of ε on the right-hand
side of a bound of the form

Pr(σn−m(A) ≤ ε) ≤ poly(n)εcm + exp(−n). (3)

The reduction from η(A) described in Lemma ?? goes through when

1

c0
+

1

c1
< 1.

For sufficient control on E vol Λε(A), we just need c0 > 0. Thus the bottleneck is the reduction
from η(A).

3. Control on bottom two singular values: We show the required control over the bottom
two singular values holds with room to spare. Specifically, we show a bound of the form (3) holds
for c0 = 2 and c1 = 4 (in fact, we show it holds for cm = 2m + 2 for any constant m). The
argument is based on an ε-net construction following the compressible/incompressible or rich/poor
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decomposition in [TV07]. That work considers lower tail bounds of σn(M + Nx) where x is a
general sub-Gaussian random variable and the sparsity parameter ρ(n) = nα−1, α > 0 is a fixed
polynomial in n. They show for every polynomial nA, there exists a polynomial nB such that

Pr
(
σn(A) ≤ n−A

)
≤ n−B.

By tracing their argument, one can show there is a linear relationship between A and B so that
their bound more closely resembles the form (3) for an unspecified tiny constant c0 and ε = 1

poly(n) .

By our improvement to the bootstrapping argument, their result gives enough control over E vol Λε(A).
However, it is not enough for η(A). We specialize to the complex Gaussian case x = g (or really the
case of x having bounded density on C) and achieve three advantages over [TV07] in this setting.
Firstly, our argument applies to every m (not just m = 0), and we show the optimal power of
c0 = 2 in the m = 0 case. Secondly, we may take ε to be arbitrarily small. Lastly, we are able to
push the sparsity parameter down to (log n)2/n.
Furthermore, because g has a continuous density, we avoid the additive combinatorics required by
[TV07], resulting in much simpler proofs.

Algorithmic application. As alluded to already, establishing control over the eigenvector con-
dition number of a matrix is essential for rigorous analysis of non-Hermitian eigenvalue problems.
The work of [BKMS21] does this by adding a dense perturbation N . The drawback is that the cost
of computing matrix-vector products goes from O(nnz(M)) to O(nnz(M)+nnz(N)) = O(n2) where
nnz(A) is the number of nonzero entries in the matrix A. The algorithmic content of this paper is
that it suffices to take N to be a sparse perturbation, with E nnz(N) = n2ρ for ρ = Ω(log(n)2/n).
As a simple example of an application of Theorem 1, we show it implies an algorithm for computing
the spectral radius spr(M) of any matrix up to mixed forwards-backwards error ε using just

O

(
log(n)

log(nρ)
· log(n/ε)

ε
·
(
nnz(M) + n2ρ

))
floating point operations.

A full preprint can be found at
https://math.berkeley.edu/~rdshah/files/sparsepseudospectralshattering.pdf
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