
General Methods for Sparsity Structure Description and Cost Estimation

Grace Dinh, James Demmel, Zhiru Zhang

Abstract

Sparse tensor operations (especially matrix multiplications and tensor contractions in general)
can be used to represent many problems in diverse fields such as genomics, machine learning,
network analysis, and electronic design automation. Casting a domain-specific problem as a sparse
linear algebra operation allows domain experts to leverage existing optimized software libraries and
hardware. However the cost (in terms of flops, data movement/accesses, or memory footprint) of a
sparse operation can vary significantly depending on the sparsity structure of its input, making the
development of general high-performance tools for sparse linear algebra challenging. Estimating and
bounding these costs is important for many applications: coming up with a performance objective
for optimizing a software or hardware implementation, developing a notion of “peak performance”
to compare a benchmark against, determining how much space to allocate for scratch or for the
output of an operation, load balancing, and many more.
Cost estimation is straightforward for dense linear algebra, as the exact set of arithmetic instructions
is always the same and known ahead of time. However, in the sparse case, this is not possible
unless the exact sparsity structure (i.e. the locations of every nonzero) of the inputs is known. As
a result, previous cost modeling approaches, e.g. [12], tend to either require that users provide a
specific input matrix (precluding their use to develop and evaluate general tools) or provide results
restricted to specific sparsity structures (e.g. uniformly distributed sparsity, block sparsity, band
matrices). For input matrices that do not neatly fit into one of these predetermined categories,
however, significant case-by-case work is required on the part of users to develop statistical models
that both describe their matrices and provide good cost estimates and bounds.
This abstract sketches out an approach to generalize and automate the construction of such sparsity
models, and to build cost estimates and bounds that take them into account, building on techniques
from database and information theory. In Section 1, we describe a way to describe sparsity structure
using matrix statistics. We then describe how to use these statistics to bound and estimate costs
in Section 2, and to optimize storage formats for sparse matrices in Section 3.

1 Characterizing Sparsity Structure

Our goal in this section is to describe a framework for matrix statistics - quantities describing
the sparsity structure of a matrix that are (a) well-defined for any sparse matrix, regardless of
structure, and (b) can be effectively used to predict the performance of a tensor operation. The
most well known matrix statistic is the number of nonzeros (nnz) of a matrix. However, nnz alone
is clearly insufficient for the cost estimation problem. Consider, for instance, the square matrix A
whose first column is nonzero and whose other columns are all zero. Despite having the same input
nnzs, ATA and AAT differ drastically in output memory footprint (and therefore data movement).
As a result, accurate performance modeling requires additional statistics to describing a matrix’s
sparsity structure in more detail.
One way to do so is to count the number of nonzeros in each row and column, which we refer to as
the row and column counts, as in [6]. These statistics require significantly more space to store than
the nnzs (as they are vectors with length equal to the number of columns and rows, respectively, of

1

a matrix), but provide significantly more information: taking the dot product the column count of
A and row count of B gives the exact number of flops required to compute A× B . Furthermore,
row and column counts can be summarized using by taking Lp norms for a few small p. These
norms provide a compact, easily generalizable way to represent how “skewed” the sparsity structure
of a matrix is (e.g. how heavy-tailed the distribution of connections is in a social network graph)
which can also be used to derive bounds on the cost of a matrix multiplication, as we will briefly
discuss in Section 2 (see [1] for a discussion of these bounds from a database point of view).
However, row and column counts alone are insufficient to describe many forms of commonly seen
sparsity patterns, e.g. band and block-sparse matrices. To represent these patterns, we will extend
the notion of indices to functions of the rows and column index. For a concrete example, consider
a tridiagonal matrix A indexed by (i, j). All of the locations of its nonzeros take on only three
distinct values of i − j; as a result, “number of distinct values of i − j” is a useful statistic that
allows us to encapsulate tridiagonal matrices (and band matrices in general).
To formalize and generalize, let us view a sparse matrix A indexed by (i, j) as a set consisting of
the location of its nonzeros: {(i, j) : Aij ̸= 0}. Let e1,... : Z2 → Z be some functions (such as i− j
in the above example), which we will refer to as index maps. Define the following two operations:

Definition 1. The projection operation πek projects its input onto dimension ek - that is, πek(A) has
a nonzero at location l if there exists some nonzero value in A at location i, j such that ek(i, j) = l.

Definition 2. The selection operation σek=η returns the subset of nonzero locations (i, j) in A
such that ek(i, j) = η. When no value for η is given, the selection operator σek will be used to
represent the list (σek=η : η ∈ Im(ek)).

Let ◦ represent function composition. If the output of g is a vector, let f ◦⃗g denote the vector
obtained by applying f to every element of the output of g. Then many natural matrix statistics
can be represented by choosing appropriate index maps ek:

• Row counts: first select each row (i), then count the number of nonzeros in each (|·|): |·| ◦⃗σi.
Column counts are identical, with j replacing i.

• Band width of a band matrix: first project onto i− j, then count: |·| ◦ πi−j

• Number of nonzero blocks in a block-sparse matrix with block size b: project onto blocks
(⌊i/b⌋ , ⌊j/b⌋), then count: |·| ◦ π⌊i/b⌋,⌊j/b⌋

• Fine-grained structured sparsity (maximum number of nonzeros in each block): for each block
(i.e. selection operator on ⌊i/b⌋ , ⌊j/b⌋), count the number of nonzeros, then take the max:
max ◦ |·| ◦⃗σ⌊x1/b⌋,⌊x2/b⌋

Furthermore, appropriately chosen index maps can be used to characterize matrices with sparsity
structures that do not align with “standard” patterns. For example, the Tuma11 matrix could be
decomposed into several components, each of which would have a very small value for |·| ◦ παi−j

(for some constant α). Preliminary experiments show that computer vision methods such as Hough
transforms [7] as well as modern machine learning methods such as symbolic regression [9] can be
used to extract descriptive index maps from many real-world matrices that can be used to derive
useful bounds; we leave further experimentation to future work.

1https://sparse.tamu.edu/GHS_indef/tuma1

2

2 Bounds from Matrix Statistics

This section describes approaches to deriving cost bounds from matrix statistics derived in Section
1. While we focus on matrix multiplication here, our approach can generalize to most “nested
loop” style programs acting on sparse data; we leave such generalization to future work. As in the
previous section, we will view a sparse matrix as a set whose elements are its nonzero indices. Then
a sparse matrix multiplication A×B, where A is indexed by (i, j) and B by (j, k), can be viewed as
the set of nontrivial arithmetic instructions - that is, {(i, j, k) : Aij ̸= 0, Bjk ̸= 0}, which we denote
T . Note that this matrix multiplication tensor can be viewed as the database join A(i, j)∧B(j, k).
Several cost functions immediately fall from this representation:

• The number of flops required to compute A × B is simply the cardinality of the matrix
multiplication tensor |A(i, j) ∧B(j, k)|.

• The size of the output is the size of the projection of the matrix multiply tensor onto the i, k
face |πi,k (A(i, j) ∧B(j, k))|.

• The arithmetic intensity of A × B on a system with fast memory M can upper bounded by
computing the maximum number of elements for any subset of of T subject to the constraint
that the projections of that subset onto the (i, j) and (j, k) dimensions are bounded by M .
In previous work focusing on dense linear algebra [8, 5], this immediately provides a data
movement lower bound of (M × #total flops) / (max T -subset size); however, the number of
flops may not be exactly known in the sparse setting, so we will focus on upper bounding the
arithmetic intensity instead.

One approach we can take to bounding these quantities is to transform the indices of the nested
loops in such a way that the resulting loop nest, when treated as a dense operation, produces useful
bounds. For instance, suppose we wish to multiply two band matrices A and B, which have band
width w1 and w2 respectively:

for i, j, k ∈ [0, N)3

C(i, k)+ = A(i, j)×B(j, k)

As the two matrices are banded, we know that |·| ◦ πi−j = w1 and |·| ◦ πk−j = w2. As a result, if
we let e1 = i− j and e2 = k − j, we can rewrite this nested of loops as:

for e1 ∈ [0, w1), e2 ∈ [0, w2), j ∈ [0, N)

C(e1 + j, e2 + j)+ = A(e1 + j, j)×B(j, e2 + j)

which provides an upper bound for flops of w1w2N . Furthermore, using Brascamp-Lieb inequalities
[5, 10, 4] provides an arithmetic intensity upper bound (on a system with cache size M) of

√
M/2.

Unfortunately, this method is not easily generalized: we were able to transform indices i and k
into new indices that could easily be bounded using the given matrix statistics because A and B
shared band structure; this would not be possible if they were not. To address this problem, we
adapt information-theoretic techniques previously used for database cardinality estimation [3, 2].
Specifically, given any probability distribution over set of arithmetic instructions T in the sparse
matrix multiplication, let h denote the Shannon entropies of its marginal distributions h (e.g.
use h(ij) to denote the entropy of the marginal distribution over i,j). Clearly, h(ijk) is upper
bounded by lg |T |, the number of flops of the matrix multiplication. Furthermore, notice that for

3

an instruction (i, j, k) to be in T , Aij and Bjk must both be nonzero; as a result, the entropies
h(ij) and h(jk) are upper bounded by lg nnz(A) and lg nnz(B) respectively. These inequalities can
be combined with those inherent to entropy (nonnegativity, submodularity, and subadditivity) to
produce bounds on cost.
For example, it can be shown that for any distribution on i, j, k:

3h(ijk) ≤ h(i, j) + h(j, k) + h(i, k) + h(j|i) + h(k|j) + h(i|k)

Letting the distribution be the uniform distribution over T sets the left side of the above inequality
to lg

(
#flops3

)
, while h(i, j), h(j, i), and h(i, k) are upper bounded by lg nnzA, lg nnzB, and lg nnzC

respectively. Furthermore, h(j|i) is upper bounded by the log of the maximum number of nonzero
elements in any row of A (similarly for the remaining terms), giving an inequality that ties together
computation cost, output size, and memory footprint. In this framework, all of the cost functions
above can be described: number of flops and output size are immediately derivable from entropic
inequalities, and arithmetic intensity can be found by adding constraints the entropies h(ij) and
h(jk) are upper bounded by lgM . In order to adapt matrix statistics using arbitrary index maps
(e.g. e1 = i−j), we can add additional constraints: specifically that h(e1|ij) = h(i|je1) = h(j|ie1) =
0. This allows for the automated construction of new lower bounds for, say, the cost of multiplying
of a band matrix by a block-sparse one, based on statistics such as the number of dense blocks
sharing an index with a given band.

3 Matrix Format Optimizations

We also wish to find efficient ways to store sparse matrices. Consider, for example, a band matrix
with a small band width. Standard sparse matrix formats, such as CSR, would require significantly
more storage for metadata (row pointers and column indices) than a similar format indexed by i−j
and j [11]. Furthermore, the order in which the indices are stored can significantly affect size and
performance too - just as (i, j) (CSR) and (j, i) (CSC) are significantly different formats, so would
(i− j, j) and (j, i− j).
The choice of data structures and layouts directly impacts computing performance. For instance, to
efficiently use the Gustavson algorithm, the operand tensors should ideally be stored in row-major
formats. We will describe how entropic bounds (specifically, the chain bound) can suggest optimal
orderings and data structures for sparse matrix storage formats.
However, performance is often heavily affected by the underlying hardware architecture. For parallel
processing systems like GPUs, maintaining workload balance often outweighs achieving a high
compression ratio in terms of format selection. As a result, formats with zero padding, such as
ELLPACK, are commonly preferred over those that store only non-zero elements. Blocking formats,
while introducing additional memory access and metadata overhead on architectures with a unified
memory model, are well-suited for many-core architectures with banked memory. Work is ongoing
to extend our cost models to account for hardware-specific performance factors.

4

References

[1] Mahmoud Abo Khamis, Vasileios Nakos, Dan Olteanu, and Dan Suciu. Join Size Bounds using
lp-Norms on Degree Sequences. Proc. ACM Manag. Data, 2(2):96:1–96:24, May 2024.

[2] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing Join Queries with Func-
tional Dependencies. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’16, pages 327–342, New York, NY, USA, June
2016. Association for Computing Machinery.

[3] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What Do Shannon-type Inequalities,
Submodular Width, and Disjunctive Datalog Have to Do with One Another? In Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS ’17, pages 429–444, New York, NY, USA, May 2017. Association for Computing Ma-
chinery.

[4] Anthony Chen, James Demmel, Grace Dinh, Mason Haberle, and Olga Holtz. Communication
bounds for convolutional neural networks. In Proceedings of the Platform for Advanced Scien-
tific Computing Conference, PASC ’22, New York, NY, USA, 2022. Association for Computing
Machinery.

[5] Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine A. Yelick.
Communication Lower Bounds and Optimal Algorithms for Programs that Reference Arrays -
Part 1:. Technical report, Defense Technical Information Center, Fort Belvoir, VA, May 2013.

[6] Kyle Deeds, Willow Ahrens, Magda Balazinska, and Dan Suciu. Galley: Modern Query
Optimization for Sparse Tensor Programs, August 2024.

[7] Paul VC Hough. Method and means for recognizing complex patterns, December 1962.

[8] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Computing, 64(9):1017–
1026, 2004.

[9] William La Cava, Bogdan Burlacu, Marco Virgolin, Michael Kommenda, Patryk Orzechowski,
Fabrício Olivetti de França, Ying Jin, and Jason H. Moore. Contemporary Symbolic Regression
Methods and their Relative Performance. Advances in Neural Information Processing Systems,
2021(DB1):1–16, December 2021.

[10] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice Rastello.
Automated derivation of parametric data movement lower bounds for affine programs. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’20, pages 808–822, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[11] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, second edition, January 2003.

[12] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S. Emer.
Sparseloop: An Analytical Approach To Sparse Tensor Accelerator Modeling. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1377–1395,
Chicago, IL, USA, October 2022. IEEE.

5

