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Abstract

We develop a sketched version of the GCRODR algorithm for the solution of a sequence of linear
systems. The recycling approach in GCRODR with an approximate invariant subspace allows
us to derive upperbounds on the convergence of GCRODR based on the field of values of the
projected system (see below). We extend this convergence result to upperbounds on the convergence
of a sketched GCRODR (S-GCRODR). The bounds for S-GCRODR deteriorate from those for
GCRODR as a function of the subspace embedding distortion ϵ, and we provide expressions for
this relation.
Sketching offers the opportunity to substantially reduce the high orthogonalization cost in long-
recurrence solvers like GMRES. Several approaches have been explored. Balabanov and Grigori
[1] replace the inner products in the orthogonalization by sketched inner products, replacing an
orthogonal projection by a oblique projection (but typically close to orthogonal), which maintains
the stability of the Arnoldi process. While they demonstrate good performance improvements on
HPC architectures, the approach does not reduce the computational complexity, O(nm2) for m
iterations with A ∈ Cn×n. On the other hand, Nakatsukasa and Tropp [5] generate the Krylov
space with truncated Arnoldi and use sketching for the LS solution of the resulting, potentially very
ill-conditioned, system. This approach has the significant advantage that it drastically reduces the
computational complexity to O(nm logm) for m iterations. However, the severe ill-conditioning of
the basis vectors typically leads to some deterioration of the convergence. We propose an efficient
and convergence-wise effective combination of the two approaches.
We consider the solution of a sequence of linear systems, A(j)x(j) = b(j), where A ∈ Cn×n, and
where the matrices change slowly. We aim for robustness and reduced iterations as well as a signif-
icant reduction in the average cost per iteration. Recycling Krylov subspaces from previous linear
solves can drastically reduce the total number of iterations, which suggests that the approximate
orthogonalization by sketching of new Krylov vectors against the recycle space is important. This
introduces only a linear cost in the number of iterations. In addition, we substantially reduce
the computational complexity by using only selective orthogonalization with a fixed number of or-
thogonalizations when we extend the (augmented) Krylov search space and solve the least squares
problem in a sketched fashion following the approach proposed in [5].

GCRODR and S-GCRODR Consider a recycle space of dimension k, defined by (range) R(U),
where U ∈ Cn×k such that (for convenience) C = AU has orthonormal columns, C∗C = I. We
define the (orthogonal) projection Φ = CC∗. We also define C⊥ such that the matrix [C C⊥] ∈ Cn×n

is unitary. We assume here, for simplicity, that U has been selected such that R(U) is a low accuracy
approximation (see below) to an invariant subspace with eigenvalues near the origin. As shown in
[7], using the recycle space R(U), we can update the initial solution, x̃0, and residual, r̃0, as x0 =
x̃0+UC∗r̃0, and r0 = (I−Φ)r̃0, and subsequently solve the projected system (I−Φ)Az = (I−Φ)r̃0
with GMRES. For this (consistent) system, the right hand side (I − Φ)r̃0 ∈ R(C)⊥ = R(C⊥) and
(I − Φ)Az : R(C⊥) → R(C⊥). So, we can analyze the convergence for GMRES for the linear
operator (I − Φ)A over the space R(C⊥).
After defining a sketching matrix S ∈ Cs×n, which provides an ℓ2 embedding of a suitable vector
space V, which contains the right hand side or residual, the R(C), and a suitable Krylov space, we
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let SC = Y RY and S∗Y = QRQ be reduced QR decompositions. In S-GCRODR the orthogonal
projection I−Φ in GCRODR is replaced by the (oblique) projection I−Φ̂, with range R(Φ̂) = R(C)
and null space N(Φ̂) = R(Q)⊥ = R(Q⊥), where [Q Q⊥] is a unitary matrix. This implies that
(I − Φ̂) = Q⊥(C

∗
⊥Q⊥)

−1C∗
⊥. After computing the updates to the initial guess and residual, S-

GCRODR solves the projected system (I − Φ̂)Az = (I − Φ̂)r̃0 using GMRES.

Convergence We give bounds on the convergence for GCRODR while recycling an approxi-
mate invariant subspace and compare these with convergence bounds for the sketched version,
S-GCRODR, recycling the same invariant subspace. We show that the convergence bounds for
S-GCRODR can deteriorate due the oblique projection; however, the deterioration can be bounded
in terms of the embedding subspace distortion ϵ.
We can analyze the convergence of GCRODR by considering convergence bounds for GMRES for
the linear operator (I − Φ)A restricted to the space R(C⊥), which can derived using the field of
values (FOV) [4, 3] of C∗

⊥AC⊥. Now let A have the block Schur decomposition (with unitary
[V V⊥] ∈ Cn×n)

A = [V V⊥]

[
T11 T12

0 T22

]
[V V⊥]

∗, (1)

where the eigenvalues of T11 are near the origin (possibly surrounding the origin) and ∥T11∥2 is small,
and the eigenvalues of T22 are further away in the right half plane, and let ∥(I−Φ)V ∥2 = δ < 1. In
the derivation of FOV bounds, we use the following notation. We use calligraphic script to denote
sets: F(T11) denotes the field of values of T11, F(T22) denotes the field of values of T22 and D
denotes the unit disk. Set addition is defined in the usual way, and for a scalar τ and set S, the
set τS is defined as τS = {τx | x ∈ S} and [τ1, τ2]S = {τx | x ∈ S and τ ∈ [τ1, τ2]}. We can then
bound the FOV of the linear operator (I − Φ)A restricted to the space R(C⊥), F(C∗

⊥AC⊥) as

F(C∗
⊥AC⊥) ⊂ [1− δ2, 1]F(T22) + [0, δ2]F(T11) + δ(1− δ2)1/2∥T12∥2D. (2)

This equation shows that even for δ not very small, say δ = 10−2 (which can be achieved with
modest effort [6]), F(C∗

⊥AC⊥) is only slightly large than F(T22), unless ∥T12∥2 is (relatively) large.
We can now bound the convergence of GCRODR for A with the recycle space R(U) using the FOV
convergence bounds for GMRES with the FOV bounds from (2).
We can bound the convergence of S-GCRODR in a similar fashion as for GCRODR using bounds
on the FOV of (I−Φ̂)A restricted to the space R(Q⊥), that is the set {z∗(I−Φ̂)Az : z = Q⊥ζ, ζ ∈
Cn−k, ∥ζ∥2 = 1}, which is also given by F(Q∗

⊥Q⊥(C
∗
⊥Q⊥)

−1C∗
⊥AQ⊥) = F( (C∗

⊥Q⊥)
−1C∗

⊥AQ⊥ ).
To understand the relation between the FOV bounds for GCRODR and S-GCRODR, we consider
the singular values of C∗

⊥Q⊥. We assume k ≪ n. Let λ1 ≥ λ2 ≥ · · · ≥ λk be the singular
values of C∗Q. Then we can derive the singular values of C∗

⊥Q⊥ from the CS-decomposition of
[C C⊥]

∗[Q Q⊥]: σ(C∗
⊥Q⊥) ∈ {1, λ1, . . . , λk}. Furthermore, we can prove, based on the ϵ-embedding,

that λk ≥
√
(1− ϵ)/(1 + ϵ), and therefore, for ϵ → 0, R(Q⊥) → R(C⊥). This in turn implies

that (C∗
⊥Q⊥)

−1C∗
⊥AQ⊥ → C∗

⊥AC⊥, and hence the FOVs that govern the convergence bounds for
GCRODR and S-GCRODR get closer and closer as ϵ becomes small.
We can describe the dependence of F( (C∗

⊥Q⊥)
−1C∗

⊥AQ⊥ ) on ϵ in substantial detail by deriving
detailed expressions of the type (for unit vectors ζ)

ζ∗Q∗
⊥Q⊥(C

∗
⊥Q⊥)

−1C∗
⊥AQ⊥ζ =

(
η1(ϵ)
η2(ϵ)

)∗(
T11 T12

O T22

)(
η1(ϵ)
η2(ϵ)

)
, (3)
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and analyze how close bounds for (3) are to (2) as a function of ϵ. These bounds clarify how
the convergence of S-GCRODR may deteriorate as a function of the distortion parameter ϵ as a
consequence of how far the oblique projection I − Φ̂ deviates from the orthogonal projection I −Φ.

A Numerical Experiment We present one set of numerical results to compare several sketched
variants of GMRES and GCRODR. The results are derived from solving the following nonlinear
Helmholtz equation on the 2D domain Ω = (0, 1)× (0, 1),

∆u+ κ2(1 + ϵ|u|2)u = 0,
ux + iκu = 2iκ, at x = 0, y ∈ (0, 1)
ux − iκu = −iκ, at x = 1, y ∈ (0, 1)
periodic boundary condition at y = 0, 1, x ∈ (0, 1),

(4)

using Anderson acceleration (AA). We take ϵ = 0.40 and κ = 12. We discretize Ω using a uniform
mesh with n + 1 equispaced nodes in the x and in the y directions, respectively. We also use the
standard 2nd order finite difference to approximate the Laplacian operator, and use ghost nodes at
the left (x = 0) and the right (x = 1) boundaries. We let n = 512 so that the number of elements in
the u vectors is n(n+1) = 262656. To set up the corresponding nonlinear system, define Ix = In+1,
Iy = In, D2x = tridiag(1,−2,1) ∈ R(n+1)×(n+1), except that D2x(1, 1) = D2x(n + 1, n + 1) =
2(−1 + iκh), and D2x(1, 2) = D2x(n + 1, n) = 2, D2y = tridiag(1,−2,1) ∈ Rn×n, except that
D2y(1, n) = D2y(n, 1) = 1, F (u) = 1

h2 (Iy ⊗D2x +D2y ⊗ Ix) + κ2diag(1 + ϵ|u|2) − fbdy, where
fbdy = 1n ⊗ [2(2)iκh ;0n−1;

2(−1)iκ
h ], so that the nonlinear system is F (u)u = 0. To define the Picard

iteration, we let the squared term of u be the current iterate u(k) and solve for the next iterate
u(k+1). That is, at each step we solve the linear system(

1

h2
(Iy ⊗D2x +D2y ⊗ Ix) + κ2diag(1 + ϵ|u(k)|2)

)
u(k+1) = fbdy (5)

for u(k+1). The initial vector u(0) is the vectorization of u(x, y) = ei(2πy+κx) on the mesh. To set
up AA, we let the damping parameter be 1, the optimization involve all previous iterates u(k), and
the iteration is terminated when ∥u(k+1) − u(k)∥∞ ≤ 10−6.
At each step of AA, the linear system (5) is solved by the following methods, and a new ILUTP
preconditioner is constructed using approximate minimum degree ordering and drop tolerance 0.002.
We compare GMRES(120), the sketched version S-GMRES(120) as proposed in [5], (standard)
GCRODR(120,20) and the sketched version S-GCRODR(120,20) discussed above, and two versions
of the method GMRES-SDR(120,20) proposed in the recent paper [2], where the authors combine
a sketched version of GMRES with deflated restarting. This approach differs from S-GCRODR in
that the authors apply the deflated restarting by augmenting the search space with the deflation
vectors, using truncated/selective orthogonalization when generating new Krylov search directions,
and then using sketching to solve the least squares problem over both deflation and new Krylov
vectors. In this approach, the new Krylov space that extends the solution search space is not
generated (approximately) orthogonal to (the image under A of) the recycle space. This may lead
to less effective search spaces and hence a reduced convergence rate. On the other hand, for the
same total search space dimension in a cycle, it leads to a further reduction in complexity compared
with the method we propose.
In Table 1, for each linear solver, we give the total and average runtime and number of precondi-
tioned matrix-vector products for solving the sequence of linear systems (5) arising from Anderson
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Table 1: Total and average numbers of preconditioned matrix-vector products and runtimes for
several methods solving the sequence of linear systems (5) arising from Anderson acceleration for
a nonlinear Helmholtz equation.

GCRO- S-GCRO- (m) GMRES- (s) GMRES-
GMRES(120) DR(120,20) S-GMRES(120) DR(120,20) SDR(120,20) SDR(120,20)

matvecs 9014 (361) 2794 (121) 10319 (382) 2819 (123) 10144 (423) 6037 (232)
time (secs) 1374.3 (55.0) 343.8 (14.9) 691.3 (25.6) 183.2 (8.0) 622.5 (25.9) 393.4 (15.1)

acceleration for the nonlinear system (4). For all linear solvers, we let the maximum dimension
of the subspace be m = 120 and let the recycle space dimension be k = 20. Due to the irregular
convergence behavior of Anderson acceleration with the linear systems (5) solved approximately,
it takes Anderson acceleration a slightly different number of steps to satisfy the stopping criterion
∥u(k+1) − u(k)∥∞ ≤ 10−6 for each solver. AA based on GCRO-DR and S-GCRO-DR takes 23
(the fewest) steps, whereas AA based on S-GMRES takes 27 (the most) steps to converge. In the
column ‘(m) GMRES-SDR(120,20)’ we report results when GMRES-SDR recycles search spaces
from one linear system to the next, whereas under the column ‘(s) GMRES-SDR(120,20)’ we re-
port results with GMRES-SDR starting each linear system without a recycle space (which seems
to work better). Finally, we note that, while for this system S-GCRODR is the clear winner, by a
large margin, in terms of the runtime, for other test problems GMRES-SDR was competitive and
sometimes faster.
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