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Abstract

Consider the following continuous-time linear time-invariant parametric system:

E(p)ẋ = A(p)x+B(p)u (1a)
y = C(p)x+D(p)u, (1b)

where matrices E(p), A(p) ∈ Cn×n, B(p) ∈ Cn×m, C(p) ∈ Cp×n, and D(p) ∈ Cp×m describe the
dynamics and vary continuously with respect to the real-valued scalar parameter p ∈ P ⊂ R,
while the vectors x ∈ Cn, u ∈ Cm, and y ∈ Cp respectively describe the state, input, and output.
The H∞ norm of (1) is an important quantity in many domains. In engineering applications, it
measures how robust the system remains in the presence of noise, while in model order reduction, it
is used to measure how well a reduced-order model mimics the dynamical behavior of a large-scale
system. For a fixed value of p ∈ P , globally convergent methods for computing the H∞ norm go
back to [BB90, BS90], but here we are interested in efficiently computing the worst (highest) value
of H∞ norm of (1) that occurs over the parameter domain P, which we denote h⋆, or said another
way, the parameter(s) p⋆ ∈ P where h⋆ is attained and (1) is the least robust to noise.
We begin with some preliminaries. We assume that the matrix pencil λE(p) − A(p) is regular
and rank 1 for all values of p ∈ P , all the matrices are differentiable with respect to p (except
for possibly on a subset of P of measure zero), and that the parameter domain consists of a finite
number of intervals. The associated transfer function for (1) is

G(s; p) = C(p) (sE(p)−A(p))−1B(p) +D(p), (2)

where s ∈ C, and for a fixed value of p, its H∞ norm is defined as

∥G(·; p)∥∞ = max
s∈C+

∥C(p) (sE(p)−A(p))−1B(p) +D(p)∥2 =: max
s∈C+

g(s; p), (3)

where C+ is the closed right half of the complex plane. If the system is known to be asymptotically
stable, then the H∞ norm coincides with the L∞ norm, i.e., the maximization of the norm of the
transfer function can be limited to the imaginary axis instead of all C+. For fixed p, let λ be such
that det(λE(p) − A(p)) = 0 and let x and y respectively be its right and left eigenvectors. Then
eigenvalue λ is controllable if B(p)∗y ̸= 0 and it is observable if C(p)x ̸= 0. Then ∥G(·; p)∥∞ < ∞
provided that all the eigenvalues of λE(p) − A(p) that are both controllable and observable are
finite and in the open left half plane. In sum, our quantities of interest are given by

h⋆ = max
p∈P

∥G(·; p)∥∞ and p⋆ = argmax
p∈P

∥G(·; p)∥∞. (4)

One direct way to estimate h⋆ would be to simply evaluate (3) using the standard level-set
method [BB90, BS90] over a grid on the parameter domain P, but doing so provides no guar-
antee that h⋆ will be estimated to even moderate accuracy. A more refined yet still rather direct
approach would be to globally approximate the value of ∥G(·; p)∥∞ as it varies with p over P,
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say, by using Chebfun [DHT14], and then simply extract h⋆ and p⋆ from the resulting inter-
polant1, but this is likely to be unnecessarily expensive. For each evaluation of ∥G(·; p)∥∞, of
which many will be needed, the standard level-set method generally needs several iterations of
computing the γ-level set points of g(iω), which involves computing all imaginary eigenvalues of
the matrix pencil Mγ(p)− λNγ(p), where

Mγ(p) :=

[
A(p)−B(p)R(p)−1D(p)∗C(p) −γB(p)R(p)−1B(p)∗

γC(p)S(p)−1C(p) −(A(p)−B(p)R(p)−1D(p)∗C(p))∗

]
, (5a)

Nγ(p) :=

[
E(p) 0
0 E(p)∗

]
, (5b)

R(p) := D(p)∗D(p)− γ2I, (5c)
S(p) := D(p)D(p)∗ − γ2I. (5d)

The cost can be significantly reduced by instead using the H∞-norm method of [BM18], as it
typically reduces the number of eigenvalue computations of Mγ(p) − λNγ(p) to just one or two
values of γ. However, if the system (1) is unstable for some values of p ∈ P , then h⋆ = ∞,
but many eigenvalue computations of Mγ(p) − λNγ(p) may be incurred to ascertain that fact in
the process interpolating ∥G(·; p)∥∞ over P. This suggests that in order to be efficient, a new
algorithm that first separately addresses the question of stability and then only proceeds with
further computation when h⋆ < ∞ is needed.
For any p ∈ P , define

Λ(p) := {λ ∈ C : det(λE(p)−A(p)) = 0, λ is both controllable and observable}, (6a)
α(p) := max{Reλ : λ ∈ Λ(p)}, (6b)

where we take Reλ = +∞ for any non-finite λ ∈ Λ(p). Then the system (1) is asymptotically
stable if

α⋆ := max
p∈P

α(p) < 0, (7)

and so we can determine if h⋆ < ∞ by approximating function α over P using Chebfun, as has been
done in [HMMS22] to check stability when constructing stable H2 ⊗ L2 reduced order models for
parametric systems via optimization. Although α may be discontinuous, either because P consists
of more than one interval or an eigenvalue becomes or ceases to be controllable or observable as p
varies, Chebfun can reliably approximate functions with jumps [PPT10].
Although we propose using global approximation of α to ascertain h⋆ < ∞, we do not suggest glob-
ally approximating ∥G(·; p)∥∞ to compute h⋆ when it is finite. Instead, we propose an optimization-
with-restarts method that directly computes local maximizers of the two-real variable optimization
problem

h⋆ = max
ω∈R,p∈P

g(iω; p), (8)

and then uses an interpolation-based globality certificate to either certify that the local maximizer is
in fact a global maximizer where h⋆ is attained or provides new starting points on the γ-level set of g
to restart the local optimization phase, where γ = g(iω̂, p̂) for a computed local maximizer (ω̂, p̂).
Interpolation-based globality certificates were first conceived in [Mit21] to develop faster and more
reliable algorithms for computing Kreiss constants and the distance to uncontrollability and have
since been extended to computing the quantity sep-lambda [Mit23].

1Chebfun can do this extraction phase exceptionally fast as it produces a piecewise Chebyshev polynomial.

2



Even though g may have points where it is a nonsmooth, the subset of such points has measure
zero, so obtaining local maximizers of g can be done with relative ease and efficiency using gradient-
based methods such as BFGS [LO13] or gradient sampling [BCL+20], particularly since there are
only two optimization variables and often m, p ≪ n. Then, with a candidate local maximizer (ω̂, p̂)
of g in hand and γ = g(iω̂, p̂), we check whether it is a global maximizer by approximating the
one-variable function

cγ(p) := min{(Reλ)2 : det(Mγ(p)− λNγ(p)) = 0,Reλ ≥ 0}, (9)

which is continuous on each interval in P and where the squaring acts to smooth out non-Lipschitz
behavior when a double imaginary eigenvalues bifurcates into a pair of eigenvalues with imagi-
nary axis symmetry. Function cγ is analogous to the eigenvalue-based functions that are globally
approximated in the interpolation-based globality certificates used in [Mit21, Mit23], and in our
setting here, has the following key properties:

(i) cγ(p) ≥ 0 for all p ∈ P .

(ii) If γ > h⋆, then cγ(p) > 0 for all p ∈ P .

(iii) If γ < h⋆, then cγ(p) = 0 holds on subset of P with positive measure.

By approximating cγ globally on P, we can determine whether or not γ is above or below h⋆.
When it is below, we need only find zeros of cγ , which are relatively easy to find by Property (iii).
Meanwhile, if γ > h⋆, which will be true if (ω̂, p̂) is a global maximizer and we perturb the
value γ = g(iω̂, p̂) slightly upward by a tolerance, then globally approximating cγ determines that
it is strictly positive on P, thus certifying that (ω̂, p̂) is indeed a global maximizer and h⋆ has been
attained. A practical benefit of approximating cγ is cost; evaluating cγ(p) always only requires
a single eigenvalue computation with Mγ(p) − λNγ(p) and negligible amount of constant-time
additional work, while evaluating ∥G(·; p)∥∞ may require more than one eigenvalue computation
and also does other non-constant-time work on top of that.
In general, only a handful of restarts are needed by our method and the overall work is almost
entirely dominated by approximating the function cγ for the final value of γ ≈ h⋆, properties which
we have also observed in our prior work with interpolation-based globality certificates [Mit21,
Mit23]. In total, the algorithm requires O(kn3) work, where k is the total number of evaluations
of cγ over all values of γ. Although k may be large, it often is not strongly correlated with the
number of system states n, and it corresponds to a task that is embarrassingly parallel and so its
effect can be significantly diminished on multi-core machines. Consequently, our method tends to
act like a cubically scaling method that has a large constant term. We have also extended this
approach to compute the worst-case H∞ norm of parametric discrete-time systems. In contrast,
while it might be possible to extend 2D level-set tests [Gu00, GMO+06, GO06, Mit20] to finding
a global maximizer of g or its discrete-time analogue, at least in some cases, based on our past
experience with that technique, we believe the resulting methods would likely be both much slower
and less reliable due to rounding error.
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