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Abstract

Moment-based methods are ubiquitous in applied mathematics, and numerical linear algebra is no
exception. Krylov subspace methods are an incredibly popular family of algorithms that approxi-
mate the solution to some problem involving a matrix A using the Krylov subspace

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b}.

This includes methods for approximating linear systems (conjugate gradient method, GMRES,
MINRES, etc.), extremal eigenvalue problems (Arnoldi iteration, Lanczos method, etc.), and matrix
functions. In many applications, m is much smaller than n, and a key benefit of this framework is
that only matrix-vector products are involved, allowing for fast computation.
In this talk, we focus on the quality of estimate on the numerical range

W (A) =

{
x∗Ax

x∗x

∣∣∣∣x ∈ Cn×n

}
of a matrix A provided by the numerical range of the orthogonal projection of A onto the Krylov
subspace Km(A, b) for some vector b, denoted by Hm. Estimates on W (A) are important not only
in the computation of extremal eigenvalues, but for error estimates for other methods. For instance,
standard error bounds for the residual in the GMRES algorithm for Ax = b after m steps depend
on the quantity

min
p∈Pm s.t. p(0)=1

max
λ∈Λ(A)

|p(λ)|, (1)

where Pm is the set of complex polynomials of degree at most m and Λ(A) is the spectrum of A.
If W (Hm) provides a good estimate of W (A), or even conv{Λ(A)}, then computing W (Hm) and
estimating the separation from zero can produce guarantees for the convergence rate.
Typically, estimates for approximating an extreme eigenvalue λ with a Krylov subspace Km+1(A, b)
depend on the quality of the initial guess b in relation to the eigenspace of λ, the eigenvector
condition number, and the quantity

min
p∈Pm s.t. p(λ)=1

max
µ∈Λ(A)\λ

|p(µ)|. (2)

The latter quantity is small when there is separation between λ and Λ(A)\λ in the complex plane,
but can become arbitrarily close to one in many cases, producing unnecessarily pessimistic bounds.
These issues can persist even when A is Hermitian. For instance, consider the tridiagonal matrix A
resulting from the discretization of the Laplacian operator on an interval with Dirichlet boundary
conditions (i.e., Aii = 2, Ai,i+1 = Ai+1,i = −1). This matrix has no small eigenvalue gaps, and so
standard gap-dependent error estimates significantly over estimate the error in approximation for
extreme eigenvalues.
In practice, Krylov subspace methods perform well at estimating extreme eigenvalues, even when
eigenvalue gaps are small. In their 2015 paper, Musco and Musco argue that bounds on distances to
any particular eigenvector are not necessarily needed in situations where the goal is only to estimate
the eigenvalues. While a good estimate of an eigenvector naturally implies a good estimate of its
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corresponding eigenvalue, the converse is simply not true. For instance, while having two extreme
eigenvalues λ and µ very close together significantly hinders eigenvector approximation, it can
actually improve eigenvalue estimation, as a good approximation to any vector in the direct sum
of the eigenspaces of λ and µ (assuming the matrix is well-conditioned) implies a good estimate to
both eigenvalues, since they are both close together.
Kuczynski and Wozniakowski were arguably the first to fully recognize this phenomenon in a
quantitative way, producing a probabilistic upper bound of the form

λmax(A)− λ
(m)
max

λmax(A)− λmin(A)
≲ ln2 n

m2
(3)

for a real symmetric matrix A ∈ Rn×n, where λ
(m)
max is the largest eigenvalue of Hm, the orthogonal

projection of A onto Km(A, b), for an initial guess b sampled uniformly from the hypersphere.
In this talk, we consider the extension of this type of gap-independent result to general matrices. In
particular, we consider the approximation that the numerical range of Hm provides to the numerical
range of A and to the convex hull of the eigenvalues of A. This is quantified by the Hausdorff
distance dH(W (Hm),W (A)) between W (Hm) and W (A), and the one-sided Hausdorff distance
supµ∈conv(Λ(A)) d(µ,W (Hm)) between conv(Λ(A)) and W (Hm). We will consider three distinct
cases: normal matrices, normal matrices with their spectrum on a circle (e.g., unitary matrices),
and non-normal matrices. Time permitting, we may also discuss bounds for the behavior of the
quantities (1) and (2), depending on the structure of the eigenvalues of A.
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