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Abstract

Large scale eigenvalue and singular value problems are typically solved using iterative methods
[10, 12]. For extreme scale matrix sizes randomized projection methods can be much faster while
still delivering sufficient accuracy, measured as the distance from the optimal low rank matrix.
The accuracy can be improved by following the projection with subspace iteration [7, 8]. However,
achieving high accuracy for individual singular vectors is generally more challenging.
In this work we address the problem where the matrix is so large that cannot be stored in its entirety
and its re-computation is either too expensive or not possible; hence even iterative methods are
infeasible. This situation is becoming increasingly common in the era of “bigger” data and is
often referred to as streaming, i.e., when the data arrives in some order, is processed, and then
forgotten. In terms of matrices, we assume that a matrix is streamed in m linear updates (see [14]),
A =

∑m
i=1Hi, but we focus our attention to streaming by rows, i.e., Hi is a set of rows of A.

Randomized methods are naturally suited for streaming. When a new Hi arrives, its randomized
projection is recorded, and the method continues until the entire matrix has been streamed, at
which point an approximate SVD can be computed from the projection. A series of improvements
on this basic idea [18, 15, 16, 13] have resulted in an efficient randomized method called SketchySVD
[14].
A different class of deterministic streaming SVD methods has been proposed but has not received
as much attention despite its potential for more accurate approximations. We use Incremental SVD
(iSVD) as a prototype such method. Inductively at step i + 1, iSVD appends the new window
Hi+1 to an existing rank-k approximation B(i), computes the SVD of [B(i);Hi+1], and then updates
B(i+1) based on the rank-k truncation of the SVD. Earlier works [9, 2, 4, 3, 5, 20] compute only
the left or right singular vectors, while the iSVD of Baker et al. [1] generalized these approaches
to track both left and right singular vectors albeit at a higher computational cost.
A notable difference is that iSVD provides a running low-rank approximation at every window,
while SketchySVD can wait till the end of streaming to compute it. Broadly speaking, randomized
sketching methods have low time and space complexity whereas deterministic sketching methods
have higher accuracy. However, the trade-offs have not been carefully studied in the literature. Em-
pirical results with randomized sketching methods do not compare with streaming or use datasets
that are typically small enough to be processed by batch methods [14]. In this work we explore these
missing comparisons and we introduce some new ideas for improving iSVD. Our contributions can
be summarized as follows:

• Traditional iSVD methods update the low rank approximation one row or a small number of
rows at a time. Because iSVD accuracy improves with larger window size (number of rows
in Hi), we instead make the window size as large as memory can hold. Because only a low
rank approximation is needed, iterative methods can be used to solve the partial SVD of the
large rectangular window.

• To evaluate the benefits of these streaming methods we need to address enormous prob-
lem sizes. For this reason, we provide a high-performance C++ implementation of both
SketchySVD and iSVD called Skema (available at https://github.com/jeremy-myers/
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skema). To perform dense and sparse matrix-vector multiplications (matvecs), Skema lever-
ages the Kokkos Performance Portability Ecosystem [6] for hierarchical parallelism on het-
erogeneous architectures, including x86 and accelerators. To compute a few eigenpairs or
singular triplets, Skema uses the PRIMME [11, 19] library. Dense matrix operations inside
PRIMME utilize multithreaded BLAS on CPUs and MAGMA on accelerators.

• We provide a complexity analysis of the “large window” streaming method and compare it
with a similar analysis of SketchySVD. We show that iSVD is more expensive than the same
iterative method applied to the entire matrix for the same number of iterations. The overhead
is proportional to the number of windows, especially for very sparse matrices. Therefore,
choosing larger window size not only improves accuracy but also reduces the time overhead.

• We also perform extensive numerical results on problems with enormous dimensions that are
much larger than those in the literature. Sources of problems include: stock price prediction
(kernel learning), social networks/analysis graphs, and scientific simulation data. We observe
that iSVD approximations are at least as accurate as SketchySVD ones and often several
orders of magnitude more accurate. Comparing runtimes, SketchySVD is typically faster, but
not as much as the complexity analysis suggests. This is because dense Gaussian embeddings
involve too many operations while sparsemaps implementations present a challenging memory
access pattern.

• Using iterative methods as the SVD solver at each window allows the use of initial guesses
which are readily available from the previous window, i.e., B(i) transformed appropriately to
correspond to the [B(i)Hi] matrix. Since the low rank approximations B(i) change relatively
slowly between windows, initial guesses provide a substantial reduction in the number of
iterations, around 30-50%.

• iSVD allows for further optimizations when solving for the largest eigenvalues of a symmet-
ric positive definite (SPD) matrix. Such problems are common in large graph Laplacians,
covariance matrices, and kernel methods in machine learning. Since the SVD and the eigen-
value problem are equivalent for SPD matrices, any right singular vector v of the rectangular
window at any iSVD step is an approximation to an eigenvector of A. Therefore, for any
row m of A we can compute the m-th value of the eigenvalue residual as A(m, :)v − λv(m).
This motivates the following convergence criterion for each iSVD window. Notice that while
the iterative method converges to the SVD of the rectangular window, the corresponding
eigenvalue residuals for A stop making progress after some iterations. If we can estimate the
A residuals we can check for this and stop early. We use reservoir sampling [17] to create and
store a subset of rows of A, AS , for which we can estimate the residual values and extrapolate
the residual norm to the entire matrix. Reservoir sampling is a method to maintain a uniform
sample of elements that have been streamed up to now. Preliminary results on this idea have
been promising for further reducing the number of iterations.

• In some cases, the streaming order of rows can be chosen by the user. An example is when a
row of a covariance or a kernel matrix is computed on demand from the data (data requires
O(n) storage vs O(n2) storage for the entire matrix). Therefore, the question arises of what
is the effect of streaming order in the final accuracy of the low rank space, and whether this
is achieved early or late during streaming. Based on the convergence analysis of [1] we show
that, on average, each window provides a similar additive improvement on accuracy. This
means that iSVD does not see the best accuracy until the last window. We have observed
that if rows are streamed in the order of decreasing row norms of A, the final accuracy is
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achieved very early in streaming. Thus, we explore the idea of using the row norms of the
low rank approximation B(i) as leverage scores to stream first the remaining rows with the
largest norms. This heuristic also achieves a similar behavior where most of the accuracy is
achieved earlier. If combined with our residual norm estimation using reservoir sampling, this
heuristic may suggest stopping the streaming before all windows have been streamed. This
approach is still under investigation.
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