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Abstract
H2 optimal reduction of linear dynamical systems represents a long-lasting, worthwhile problem in
system-theoretical model order reduction. In this short note, we propose extensions of first-order
necessary conditions, both based on system Gramians and transfer functions, to the H2 problem
for the class of linear systems with quadratic outputs.

1 Introduction

Model-order reduction (MOR) refers to the procedure by which one approximates a large-scale
dynamical system, modeled by systems of ordinary differential equations, with a comparatively
lower-order surrogate model which can be used as a cheap-to-evaluate surrogate in downstream
computational tasks, such as optimization or control. In order to be an effective surrogate, the
computed reduced-order model (ROM) should recover the dominant input-to-output response char-
acteristics of the original complex system, as well as preserve qualitative features like internal struc-
tures. We refer to [1,2] for more details on system-theoretical MOR, since this category is of interest
to us.
The primary consideration of this work is the development of methods for the MOR of linear
dynamical systems which contain quadratic output functions, or linear quadratic-output (LQO)
systems. Here, we develop extensions of classical MOR approaches applicable solely to systems
with linear dynamics and linear outputs. Our contributions are threefold: First, we consider the
H2 optimal model reduction problem, and derive first-order necessary conditions for H2 optimality
based on rational transfer function interpolation. These provide a natural extension of the well-
known interpolation-based H2 optimality framework of Meier and Leunberger [7,8] for linear model
reduction. Based on the developed theoretical optimality framework, we propose an extension of the
well-known iterative rational Krylov algorithm (IRKA) [7] for linear H2 optimal model reduction.
Finally, we show how to compute H2 optimal reduced models using only evaluations of the linear-
and quadratic-output transfer functions.

2 Transfer functions, norms and MOR of LQO systems

In this work, we consider large-scale dynamical systems with linear dynamics and outputs which
are (up to) quadratic functions of the state vector. In state-space, such systems are formulated as

Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +M (x(t)⊗ x(t)),
(1)

where x(t) ∈ ℝn is the system’s internal state, u(t) ∈ ℝm are the control inputs, and y(t) ∈ ℝp

are the observed outputs. The system matrices satisfy A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n and
M ∈ ℝp×n2 . We assume that the system in (1) is asymptotically stable, i.e., the eigenvalues of A
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to be in the left-half plane. Systems that consider quadratic observables as quantities of interest
arise in a variety of applications, and particularly whenever one is interested in observing quantities
computed as the product of time or frequency-domain components of the state [4, 11].
The frequency-domain response of system (1) is fully specified by 2 rational transfer functions [4,6]:

H1(s) = C(sI−A)−1B and H2(s, z) = M
(
(sI−A)−1B⊗ (zI−A)−1B

)
. (2)

The first function H1(s) is the typical transfer function of a linear-output system, and describes
the transfer from input u(t) to output y1(t) := Cx(t), which is linear in x(t). The second bivariate
function H2(s, z) the transfer from input u(t) to output y2(t) := M (x(t)⊗ x(t)), which is quadratic
in x(t). The H2 norm for systems of the form (1) can be defined via these transfer functions as [4,5]

∥Σ∥2H2
:=

1

2π

∫ ∞

−∞
∥H1(ı̇ıω)∥2Fdω +

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
∥H2(ı̇ıω1, ı̇ıω2)∥2Fdω1dω2. (3)

We note that when M = 0, it implies that H(s, z) = 0, and the formula above simplifies to the
first integral term only, which is the standard formula as used in [7].
In practical applications, the state dimension n can be rather large, e.g., in the order of the millions,
and any repeated action involving the full-order model (FOM) (1) becomes prohibitively expensive.
Model reduction seeks to remedy this problem with the construction of cheap-to-evaluate surrogate
models having the same form as (1), but described by a comparatively much smaller number of
differential equations. Mathematically, this amounts to computing a system

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + M̂ (x̂(t)⊗ x̂(t)),
(4)

with a significantly reduced dimension 1 ≤ r ≪ n. x̂(t) ∈ ℝr contains the reduced-order state
variables, and ŷ(t) ∈ ℝp are the approximateds output. The reduced-order matrix operators
satisfy Â ∈ ℝr×r, B̂ ∈ ℝr×m, Ĉ ∈ ℝp×r, and M̂ ∈ ℝp×r2 . In order to be an effective surrogate,
the reduced model (4) should replicate the input-to-output response characteristics of the large-
scale system (1). In order words, for a given tolerance τ > 0, the output deviation should satisfy
∥y − ŷ∥ ≤ τ∥u∥ in an appropriate norm for a range of admissible inputs u.
Suppose that one is interested in controlling the Lp

∞, or “worst case” deviation in the output
∥y − ŷ∥Lp

∞ := supt≥0 ∥y(t)− ŷ(t)∥∞. Significantly, one can show following error bound [4]:

∥y − ŷ∥Lp
∞ ≤ ∥Σ− Σ̂∥H2

(
∥u∥2Lm

2
+ ∥u⊗ u∥2

Lm2
2

)1/2
. (5)

In other words, the H2 model error bounds the Lp
∞ output error. Based on the bound (5), we

consider the H2 optimal model reduction problem for the LQO system class (1). Given the system
in (1), find a ROM such that

min
dim(Σ)=r

J (Σ̂), J (Σ̂) := ∥Σ− Σ̂∥2H2
. (6)

3 One main result

We follow here the results in [9]. To simplify the approximation problem, we assume the approxi-
mate system in (4) has simple poles. Then, the reduced-order linear- and quadratic-output transfer
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functions can be expressed in pole-residue form:

Ĥ1(s) =
r∑

i=1

𝕔i𝕓Ti
s− λi

and Ĥ2(s, z) =
r∑

j=1

r∑
k=1

𝕞j,k (𝕓j ⊗ 𝕓k)T

(s− λj)(z − λk)
, (7)

where 𝕓k ∈ ℂm, and 𝕔k ∈ ℂp,𝕞j,k ∈ ℂp, for all j, k = 1, . . . , r. We define 𝕔i𝕓Ti ∈ ℂp×m and
𝕞j,k(𝕓i ⊗ 𝕓i)T ∈ ℂp×m2 to be the residues of Ĥ1(s) and Ĥ2(s, z) corresponding to λi and (λj , λk),
respectively. We are able to show that

∥Σ− Σ̂∥2H2
= ∥Σ∥2H2

− 2

 r∑
i=1

𝕔Ti H1(−λi)𝕓i +
r∑

j=1

r∑
k=1

𝕞T
j,kH2(−λj ,−λk) (𝕓j ⊗ 𝕓k)

+ ∥Σ̂∥2H2
. (8)

This makes the H2 optimal model reduction problem tractable by minimally parameterizing the
ROM in (4) in terms of the transfer function poles and residues.

Theorem 1 Suppose that Σ̂ has simple poles λ1, . . . , λr ∈ ℂ−, and is a local minimizer of the
squared H2 error ∥Σ− Σ̂∥2H2

. Then, for all i, j, k = 1, . . . , r, it holds that

0 =
(
H1(−λi)− Ĥ1(−λi)

)
𝕓i,

0 =
(
H2(−λj ,−λk)− Ĥ2(−λj ,−λk)

)
(𝕓j ⊗ 𝕓k) ,

0 = 𝕔Tk
(
H1(−λk)− Ĥ1(−λk)

)
+

r∑
ℓ=1

𝕞T
k,ℓ

(
H2(−λk,−λℓ)− Ĥ2(−λk,−λℓ)

)
(Im ⊗ 𝕓ℓ)

+
r∑

ℓ=1

𝕞T
ℓ,k

(
H2(−λℓ,−λk)− Ĥ2(−λℓ,−λk)

)
(𝕓ℓ ⊗ Im) ,

0 = 𝕔Tk

(
d

ds
H1(−λk)−

d

ds
Ĥ1(−λk)

)
𝕓k +

r∑
ℓ=1

𝕞T
k,ℓ

(
∂

∂s1
H2(−λk,−λℓ)−

∂

∂s1
Ĥ2(−λk,−λℓ)

)
(𝕓k ⊗ 𝕓ℓ)

+
r∑

ℓ=1

𝕞T
ℓ,k

(
∂

∂s2
H2(−λℓ,−λk)−

∂

∂s2
Ĥ2(−λℓ,−λk)

)
(𝕓ℓ ⊗ 𝕓k) .

In other words, tangential interpolation is a necessary condition for H2 optimality. We also note that
when M = 0, it implies that the formulae above simplify accordingly to the standard interpolation-
based FONC’s for classical linear systems, as in [7, 8].

4 Summary of all proposed results

Based on the bound in (5), we have considered the H2 optimal model reduction problem for the
class of systems in (1). We went about this in two different ways, corresponding to two types of
FONCs, namely for the first one mentioned earlier introduced in [8]. Then, for the second, e.g., the
Gramian-based FONCs as introduced in [13], we analyzed it in [10].
Our contributions to the interpolation-based formulation are threefold:

A. First, we derive interpolation-based first-order necessary conditions for H2 optimal model re-
duction. These amount to tangential interpolation of a weighted sum of the transfer functions
in (2), and generalize the analogous optimality conditions for linear H2 model reduction. We
show how to enforce these conditions in the construction of the ROM using projection.
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B. Secondly, we show that these conditions are equivalent to the Gramian-based H2 optimality
conditions for LQO systems as in (1).

C. Thirdly, we propose an extension of TF-IRKA in [3] to systems of the form (1). The algorithm
enforces the necessary H2 optimality conditions at every step and produces locally H2 optimal
approximants upon convergence. Additionally, at every step, the matrices of the ROM are
computed solely in terms of data, i.e., samples of the two transfer functions in (2).

Due to space limitations, we are not able to go into a detailed analysis of the results concerning
Gramian-based FONCs, as presented in [10]. In short, we derive gradients of the squared H2 system
error with respect to the system matrices of the LQO-ROM as parameters. The stationary points
of these gradients directly yield Gramian-based FONCs for H2 optimality. These results generalize
the analogous Gramian-based FONCs for linear H2 optimal model [12, 13] to the LQO setting. We
also show that a H2 optimal LQO-ROM is necessarily defined by Petrov-Galerkin projection. The
relevant projection matrices are obtained as solutions to a pair of Sylvester equations.
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