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Abstract

A half-arrow matrix F has the form

F =

(
Ψ g
0T ρ

)
, g ∈ Rn, ρ ∈ R, (1)

Ψ = diag(ψ1, . . . , ψn), ψ1 ≥ ψ2 ≥ . . . ≥ ψn ≥ 0. (2)

We consider the problem of determining which of the diagonals of Ψ are close to singular values
of F and how these values can be deflated efficiently. Such deflation techniques were explored in
the “conquer” stage of the divide-and-conquer bidiagonal SVD algorithms given by Jessup and
Sorensen [9] and Gu and Eisenstat [7].
A version of the algorithm in [9] is coded in the LAPACK [1] subroutine dlasd2.f [10] as a part of
the bidiagonal SVD subroutine dbdsbc.f [1, p.208].
The SVD version of the Cauchy interlace theorem [6, Corollary 8.6.3] states that the singular values
σ1, . . . , σn+1 of F satisfy

σj ≥ ψj ≥ σj+1, j = 1, . . . , n. (3)

Interpretating a result in [13, p.95], Jessup and Sorensen [9] point to three cases where ψj is a
singular value of F :

• Case I: gj = eTj g = 0, then (ψj , ej , ej) is a singular triplet of F ;

• Case II: ψj = 0, so we let Gn+1,j be a Givens rotation affecting rows j and n + 1 whose
non-trivial part is defined by(

c −s
s c

)(
gj
ρ

)
=

(
0
ρ̂

)
,

c2 + s2 = 1,

ρ̂ = ±
√
g2j + ρ2,

and we have that
F̃ = Gn+1,jF

has the singular triplet (0, ej , ej);

• Case III: ψi = ψj for some i ̸= j, so we let Gij be a Givens rotation affecting rows i and j
where the non-trivial part of Gij is defined by(

c s
−s c

)(
gi
gj

)
=

(
ĝj
0

)
,

c2 + s2 = 1

ĝj = ±
√
g2j + g2j+1

and we have that
F̃ = GijFG

T
ij

has the singular triplet (ψj , ej , ej).
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In all three cases, the computation of the SVD of F is reduced to that of computing the SVD of
a lower dimensional half-arrow matrix. If none of these deflations is possible for any j, then from
[13, p.95], we have the strict interlacing property

σj > ψj > σj+1, j = 1, . . . , n. (4)

The deflation strategies in [9, 7] are based upon the idea that one of these three cases applies
to a matrix near F . We model these strategies as follows: we compute a value γF such that
∥F∥2 ≤ γF ≤

√
2∥F∥2, and let τ be a small value, usually O(εM ) where εM is the machine unit.

In some applications, τ may be an acceptable level of error.
Corresponding to the three cases for when ψj is a singular value of F , we can deflate gj in the
following three cases:

1. If
|gj | ≤ τγF (5)

we simply set gj to zero;

2. If
ψj |gj |√
g2j + ρ2

≤ τγF ,

then we apply the Givens rotation Gn+1,j to rows n+ 1 and j setting gj to zero producing

F̃ + δFn+1,j = Gn+1,jF, ∥δFn+1,j∥2 ≤
√
2τγF (6)

where F̃ is a half-arrow matrix with Ψ unchanged;

3. If
|δij | ≤ τγF , δij =

gjgi
g2i + g2j

(ψi − ψj) (7)

and |gj | ≤ |gi|, then we apply the Givens rotation Gij to rows i and j setting gj to zero
producing

F̃ + δFij = GijFG
T
ij , ∥δFij∥2 ≤

√
2τγF (8)

where F̃ is again a half-arrow matrix with Ψ unchanged. If (7) holds and |gj | > |gi|, we set
gi to zero in an analogous manner.

The deflations (5) and (8) are discussed in [9, 7] and the deflation (6) is discussed in [9].
We enhance the appproach in [9, 7] and in the LAPACK routine dlasd2.f [10] by producing a
better deflation algorithm that is still O(n) operations. We also show that if for a particular value
of j, gj cannot be deflated by (5) or by (6) or by (8) for any i ̸= j, then

σj − σj+1 > τγF /
√
2n+ 1. (9)

However, the only algorithm we give with that guarantee for all j has a worst case complexity
proportional to n2. If we weaken these conditions, so that there is no index i such that |i− j| < q,
and we have (8), then

σj − σj+1 >
√
2τ2qγF +O(τ4q2γF ). (10)
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The algorithm we recommend is a hueristic proposed here with worst case complexity proportional
to n, the same asymtotic complexity as the LAPACK procedure, but with better deflation guaran-
tees. It acheives (10) with q = 2 for all j. Bounds similar to (9) and (10) are not possible for the
singular values of deflated structure matrices, for instance, there are no such bounds for bidiagonal
matrices.
In light of work by Demmel and Gragg [4] that formulated an algorithm to compute the nonzero
singular values of F to near relative accuracy, we formulate and analyze versions of the deflations
in (5) and (8) that preserve relative accuracy in the singular values.
By choosing γF to be within a constant factor of ∥F∥2, these deflations produce no more error in
the singular values than would be expected of a normwise backward stable algorithm for finding
the SVD of F . However, for algorithms to compute the SVD of F , deflation gives us dimension
reduction and speeds up the algorithms in [9] and [7]. The LAPACK routine dlasd2.f uses only
the first and third types of deflation.
Two other applications for this kind of deflation have been investigated. The first is in is SVD-
based regularization approaches given in [8, §4.3] and [11]. The second is in the implementation of
a Krylov-Schur implementation [2, 12] of the Golub-Kahan-Lanczos SVD algorithm [5].
This is a continuation of work in [3].
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