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Abstract

Let A be an n by n sparse symmetric positive definite matrix, and let A = LLT be the Cholesky
factorization of A, where L is a lower triangular matrix. It is well known that L suffers fill during
such a factorization; that is, L will have nonzero entries in locations occupied by zeros in A. As
a practical matter, it is important to limit the number of such fill entries in L. Consequently,
software for solving a sparse symmetric positive definite linear system Ax = b via sparse Cholesky
factorization requires the following four steps.
First, compute a fill-reducing ordering of A using either the nested dissection [5, 11] or the minimum
degree [1, 6, 12, 15] ordering heuristic (the ordering step). Second, compute the needed information
concerning and data structures for the sparse Cholesky factor matrix (the symbolic factorization
step). Third, compute the sparse Cholesky factor within the data structures computed during the
symbolic factorization step (the numerical factorization step). Fourth, solve the linear system
by performing in succession a sparse forward solve and a sparse backward solve using the sparse
Cholesky factor and its transpose, respectively (the solve step).
The authors of this work, along with J. L. Peyton, presented a thorough look [10] at some serial
algorithms for the third step in the solution process (the numerical factorization step). Our goal
was to improve the performance of serial sparse Cholesky factorization algorithms on multicore
processors when only the multithreaded BLAS are used to parallelize the computation. Essentially,
our first paper [10] explored what can be done for serial sparse Cholesky factorization using the
techniques and methodology used in LAPACK.
Our primary contribution in [10] is the factorization method that we called right-looking blocked
(RLB). Like all of the other factorization methods studied in [10], RLB relies on supernodes to obtain
efficiency, where supernodes are, roughly speaking, sets of consecutive columns in the factor matrix
sharing the same zero-nonzero structure. RLB, however, is unique among the factorization methods
studied in [10] in that it requires no floating-point working storage or assembly operations; that is,
the computation is performed in place within the data structures computed for the factor matrix
during the symbolic factorization step. RLB is also unique among the factorization methods studied
in [10] in that it is entirely dependent for efficiency on the existence of few and large dense blocks
joining together pairs of supernodes in the factor matrix. Furthermore, the number of and size of
these dense blocks are crucially dependent on how the columns of the factor matrix are ordered
within supernodes. As a result, RLB is perfectly suited for studying the quality of algorithms for
reordering columns within supernodes. It is precisely a study of this sort that will occupy our
attention in this work. It should be noted that reordering the columns (and the corresponding
rows) within each supernode does not change the number of nonzeros in the Cholesky factor.
Pichon, Faverge, Ramet, and Roman [14] were the first to take seriously the problem of reordering
columns within supernodes, in that they were the first to treat it in a highly technical manner.
They ingeniously formulated the underlying optimization problem as a traveling salesman problem,
for which there exist powerful and effective heuristics. We will refer to their approach as TSP. The
problem with their approach was not ordering quality; it was the cost, in time, of computing the
needed TSP distances [8, 14]. In 2021, Jacquelin, Ng, and Peyton [9] devised a much faster way to
compute the needed distances, which greatly reduces the runtimes for the TSP method.
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In 2017, Jacquelin, Ng, and Peyton [8] proposed a simpler heuristic for reordering columns within
supernodes based on partition refinement [13]. In their paper, they report faster runtimes for their
method than TSP, while obtaining similar ordering quality. We will refer to their method as PR.
In this work, we perform a careful comparison of TSP and PR; we compare them, primarily, by
measuring the impact of TSP and PR on RLB factorization times using Intel’s MKL multithreaded
BLAS on 48 cores of our test machine. This approach is justifiable since, as alluded to above, the
performance of RLB depends on the quality of the TSP or PR reorderings.
The comparisons are conducted using a set of large matrices from the SuiteSparse collection [3].
In our experiments, certain small supernodes are merged together to create a coarser supernode
partition. This idea was first introduced by Ashcraft and Grimes [2], and was demonstrated to
reduce the factorization time at the expense of a relatively small increase in the size of the data
structures. Merging supernodes has become a standard practice in software for sparse symmetric
factorization, such as MA57 [4] and MA87 [7].
In this presentation, we will describe two techniques for improving the quality of the TSP reorder-
ings; we will show that the best results for TSP are obtained when the two techniques are combined.
We will also introduce a new way to reorganize the PR reordering algorithm to make it much more
time and storage efficient. In addition, we will introduce a single technique for modestly improving
the quality of the PR reorderings. We will further show that the enhanced PR and enhanced TSP
produce orderings of virtually equal quality. However, the former requires significantly less storage
to implement and runs much faster than the latter.
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