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Abstract

Rank-revealing factorizations, e.g., [2, 7], have a long history in numerical linear algebra. We con-
tinue this story in multiple directions by discussing recent highlights of their development and use.
This starts with a discussion about how pivoted QR factorizations play a central role in techniques
for compressing modern, large-scale deep learning models [3, 5]. Motivated by that work we briefly
highlight recent advances in computational methods for computing interpolative decompositions
that leverage tools from randomized numerical linear algebra [1] and discuss associated theoretical
developments that more clearly capture the behavior of low-rank matrix approximations derived
from pivoted factorizations
Modern deep learning models are often vastly overparametrized for their desired task; it is difficult
to determine a optimal model size based on a description of the problem and/or training data.
However, this has consequence as it leads to large models that are expensive to store and run
inference on. We show that given a small amount of (potentially unlabeled) data we can compress
a given model into one of smaller size that retains the same structure as the original model—it is
just smaller. To illustrate this process we can consider a one-hidden layer neural network

f(x) = σ(xTW )α,

where x ∈ Rd represents a data point, W ∈ Rd×n is the weight matrix, α ∈ Rn is a linear last
layer, and σ is a non-linear function applied entrywise. Our task is to compute Ŵ d×m and α̂m with
m < n such that f(x) ≈ σ(xT Ŵ )α̂ to the desired accuracy and for all sensible x.

Given some small amount of data points, which we encode as the columns of XC , we accomplish
this goal by computing an interpolative decomposition [4] of Z = σ(XT

CW )α as

Z ≈ Z(: C)T,

where C represents a subset of the columns of Z. Because the non-linear function is applied entrywise
it commutes with subset selection and we have that

f(x) ≈ σ(xTW (:, C))(Tα).

Letting Ŵ = W (:, C) and α̂ = Tα accomplishes our goal. This idea can be extended to multiple
layers and more complicated layer types.
In the preceding use case, the matrices that we have to compute interpolative decompositions of
can be quite large. However, the final quality of the process is not typically dependent on the
exact subset of columns chosen—we just need a sufficiently good subset. This motivates the use of
randomized algorithms to rapidly compute a suitable C. Numerous algorithms exist for this task, and
we provide a novel randomized version of the Golub-Klema-Stewart subset selection algorithm [6]
that performs admirably in practice. In particular, we observe that its performance (and that
of alternatives) depends on properties of singular vectors and we derive theoretical bounds that
highlight this fact [1].
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