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Abstract

Tensors generalize matrices by representing data in more than two dimensions. Tensor decom-
positions are mathematical constructs used to efficiently represent, approximate, and manipulate
tensors. Tensor decompositions have applications in various fields such as in image analysis [2],
in signal processing [6], in quantum chemistry [5], in chemometrics [4] and many more. Finding
the most accurate low rank tensor decomposition of a tensor is an NP-hard problem [1] in most
cases. Consequently, numerical optimization algorithms are used to compute a low rank approxi-
mation efficiently. In this talk, we present a novel alternating optimization algorithm for CP tensor
decomposition (CPD) [7].

CP Decomposition. The CPD problem, for an order 3 tensor TTT is formulated as following,
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The most used algorithm to solve the above problem is alternating least squares (ALS). ALS solves
for one factor matrix at a time which results in least squares equation. Solving for factor matrix
A results in the following least squares equation,

A(C ⊙B)T ∼= T(1),

where ⊙ denotes the Khatri-Rao product. ALS solves these equations via normal equations where
the solution is given as

A = T(1)

(
C ⊙B

)†T
= T(1)

(
C ⊙B

)
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where ∗ denotes the Hadamard product, and † denotes the Moore-Penrose inverse. The normal
equations result in a solution that is optimal in Frobenius norm and matrix 2−norm. We propose
an update that solves the least squares equations for factor A as

A = T(1)(C
†T ⊙B†T ).

We prove that the above update leads to an alternating minimization algorithm which has a local
superlinear convergence rate for exact CP rank problems, when rank is smaller than the di-
mensions. The above update is an optimal solution of the least squares equations in Mahalanobis
norm. The algorithm corresponding to these alternating updates is called alternating Mahalanobis
distance minimization (AMDM) [7]. The update for factor A is derived by minimizing the following
objective function
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where M is a Kronecker structured positive definite matrix. M is defined as

M =
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,

M (B) = BBT + (I −BB†),

and similarly defined for M (A) and M (C). Mahalanobis norm [3] is a generalization of Frobenius
norm by using covariance or ground metric matrices. For exact rank problems, the minima for any
Mahalanobis norm corresponds to the minima of Frobenius norm. However, for approximation of
a tensor with low CP rank, the stationary point of the AMDM algorithm may not be optimal in
Frobenius norm metric that is the most used metric for assessing quality of the decomposition.
We empirically show that changing the metric M from I (which corresponds to the ALS update) to
the proposed AMDM metric leads to a well-conditioned decomposition for approximation problems.
A well-conditioned decomposition is useful for separation of components, clustering using CPD
factors, and stability of application of the operator when an operator is approximated via CPD.
We also show that by interpolating between AMDM and ALS updates, we obtain a hybrid algorithm
that leads to better fitness as compared to ALS while maintaining a the quality of decomposition.
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