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Abstract

We are interested in linear discrete inverse problems which involve the reconstruction of objects or
signals from noisy observed data. The available linear system is given by

Ax+ e = b, (1)

where A ∈ Rm×n, m ≥ n is a matrix whose singular values decay without significant gap and cluster
at the origin (i.e., the matrix is ill-conditioned). Discrete inverse problems can arise through the
discretization of Fredholm integral equations of the first kind; see [5, 3], but can also arise in massive
data streaming problems such as the training of the random feature model in machine learning [8]
or limited angle imaging problems including, for example, those from medical imaging [2]. To derive
a meaningful solution from the available problem, regularization is needed.
In Tikhonov regularization, the least-squares problem associated with (1) is replaced by the penal-
ized least-squares problem

min
x∈Rn

{
∥Ax− b∥22 + α2 ∥Lx∥22

}
(2)

where α > 0 is a regularization parameter that balances the sensitivity of the solution vector to
the error in b, as well as the closeness to the desired solution of the unavailable error-free problem.
When the regularization matrix L ∈ Rs×n is chosen so that the null spaces of A and L trivially
intersect then the solution of (2) may be written in closed form.
Iterative refinement (IR) has long been utilized as an iterative strategy to improve the accuracy of
numerical solutions to linear systems of equations. Recent works by Higham and collaborators have
considered the use of IR in conjunction with mixed precision computing in light of recent advance-
ments in hardware capabilities; see [6, 1]. Our interests of studying IR applied to the Tikhonov
problem were motivated by the work [7] which considered the solution of symmetric positive defi-
nite linear systems and least-squares problems in mixed precision which showed regularization to
be a key requirement when computing low precision factorizations.
The kth iterate of IR applied to the Tikhonov problem in standard form, (ATA+ α2I)x(k) = AT b,
where L = I may be written recursively as

x(k) = x(k−1) +
(
ATA+ α2I

)−1
AT r(k−1) − α2

(
ATA+ α2I

)−1
x(k−1) (3)

where r(k−1) = b − Ax(k−1) denotes the (k − 1)th residual. Riley in [9] and Golub in [4] note that
the IR procedure in (3) is equivalent to iterated Tikhonov regularization in exact arithmetic whose
kth iterate is given by

x(k) = x(k−1) +
(
ATA+ α2I

)−1
AT r(k−1)

which may be interpreted as a preconditioned Landweber method, or, from a mathematical opti-
mization point of view - a preconditioned gradient descent method with fixed step size.
To better understand the application of mixed precision IR applied to the Tikhonov problem we
derive a methodology to formulate the iterates as filtered solutions by writing them as a recursive
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relationship between the iterates of preconditioned Landweber with a Tikhonov-type preconditioner
and previous iterates. A filtered solution is of the form

xfilt =
∑
j

ϕj

uTj b

σj
vj

where vectors uj and vj correspond to left and right singular vectors of A, respectively. The σj
correspond to the singular values of A. An intelligent selection of the filter factors ϕj can remove
deleterious components of the approximate solution to the least-squares problem stemming from
(1). By considering a filtered solution, we are able to study the effect that each level of precision
utilized in IR has on (i) the quality of the approximate solution and (ii) the number of iterations the
algorithm requires to terminate according to some termination criterion. We demonstrate in our
numerical results that mixed precision IR on the Tikhonov problem gives comparable or superior
accuracy against results computed in double precision as well as another benchmark which supports
its use in modern applications that natively support mixed precision floating-point arithmetic.
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