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Abstract

We investigate the optimal H2 approximation of a discrete-time, single-input single-output system

x[k + 1] = Ax[k] + bu[k]

y[k] = c⊤x[k]
with transfer function H(z) = c⊤(zI−A)−1b, (1)

where x[k] ∈ Rn, u[k] ∈ R, and y[k] ∈ R are, respectively, the states, input, and output at time k;
A ∈ Rn×n,b ∈ Rn, and c ∈ Rn. Even though we explicitly write the state-space matrices in (1), in
this work, we will never assume access to the system matrices, system state, or evaluations of the
transfer function, but only to time-domain input-output data

U = [u[0] . . . u[T ]]⊤ ∈ RT+1 and Y = [y[0] . . . y[T ]]⊤ ∈ RT+1. (2)

Given the input/output data (2), we seek to construct a data-driven reduced-order model (DDROM)

xr[k + 1] = Arxr[k] + bru[k]

yr[k] = c⊤r xr[k]
with transfer function Hr(z) = c⊤r (zIr −Ar)

−1br, (3)

where xr[k] ∈ Rr is the reduced state, yr[k] is the reduced output, and Ar ∈ Rr×r,br ∈ Rr, and
cr ∈ Rr with r ≪ n. Specifically, we would like the DDROM (3) to minimize the H2 distance

∥H −Hr||2H2
=

1

2π

∫ π

−π
|H(eiω)−Hr(e

iω)|2dω. (4)

The optimal H2 reduced order modeling problem is of interest because the H2 error (4) provides a
bound on the output error for finite energy inputs [4], more specifically,

∥y − yr∥L∞ ≤ ∥H −Hr∥H2∥u∥L2 . (5)

The Realization independent Iterative Rational Krylov Algorithm (TF-IRKA) [5] constructs H2

optimal DDROMs using only samples of the transfer function H(σ) and H ′(σ) without explicit
access to the underlying dynamics. However, TF-IRKA requires repeated evaluations of H(z) and
H ′(z) at a priori unknown points outside the unit disc, i.e., |σ| > 1. In some settings, one cannot
actively re-sample H(z), but is only provided input-output time-domain data as in (2).
In a recent work by Burohman et al. [8], a new method to calculate transfer function evaluations
from time-domain data was presented. This method takes the form of a linear system relating the
transfer function value H(σ) to the time domain data (U,Y):[

Hn(U) 0
Hn(Y) −γn(σ)

] [
ξ

H(σ)

]
=

[
γn(σ)
0

]
, (6)

where

Hn(U) =

u[0] . . . u[T − n]
... . . . ...

u[n] . . . u[T ]

 ∈ R(n+1)×(T−n+1) and γn(σ) =


1
σ
...
σn

 ∈ Cn+1.
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A similar linear system also relates H ′(σ) to the time-domain data (U,Y). While in exact arith-
metic (6) enables recovery of H(σ) from time domain data (2), the numerics of the problem are
much more subtle. In particular, the stacked Hankel matrices are expected to be extremely ill-
conditioned [3, 6, 7], and the presence of σn in γn(σ) could lead to overflow for large n and |σ| > 1.
It is these numerical linear algebra considerations that we cover in this talk.
Consider the classical method to solve (6) via the singular value decomposition of the coefficient
matrix in (6)

ÛΣ̂V̂⊤ =

[
Hn(U) 0
Hn(Y) −γn(σ)

]
.

We may then solve (6) by computing[
ξ

H(σ)

]
= V̂Σ̂−1Û⊤

[
γn(σ)
0

]
. (7)

If the solution is computed as in (7), we expect the ill-conditioning present in the coefficient matrix
(and reflected in the singular values Σ̂) to negatively affect the solution accuracy, especially if the
data in (U,Y) are noisy.
Our first contribution [1] makes use of the fact that we do not need to solve for the whole vector
in the linear system (6); indeed the information in ξ is not used at all; we only require the last
entry of the solution vector to recover H(σ). This allows us to replace all but the last column in
the coefficient matrix of (6) by an orthonormal basis for their range and still recover the same last
component of the solution vector without needing to invert any singular values.

Theorem 1. Assume access to the data (2) and define

U = orth
([

Hn(U)
Hn(Y)

])
. (8)

Then, the solution to the new linear system[
U

0
−γn(σ)

] [
ξ̂

H(σ)

]
=

[
γn(σ)
0

]
(9)

has the same last component as the original linear system (6).

Therefore, the highly ill-conditioned stacked Hankel matrices may be replaced by an orthonormal
basis for their range without changing the last component of the solution vector. Note that this is
different than the solution formula (7) where the whole vector is constructed. While theoretically
equivalent, Theorem 1 does not require inverting (small/any) singular values as solving (6) via (7)
requires. The effect of Theorem 1 is quite dramatic, in some examples reducing the condition
number of the coefficient matrix from 1016 to 101. Another advantage of Theorem 1 is that when
one must recover H(σi) for many different σi (as is required for H2 optimality), the orthonormal
basis U may be precomputed once and recycled for many transfer function evaluations, reducing
the online runtime from O(n3) to O(n2).
While (9) offers great conditioning improvements over (6) when |σ| = 1, the presence of σn in γn(σ)
causes the coefficient matrix in (9) to be badly scaled when |σ| > 1. As we seek to construct H2

optimal reduced models, recovering H(σ) where |σ| > 1 is required. Exploration of this issue leads
to the problem of finding eigenpairs of a rank-one update to an orthogonal projection

QQH + zzH (10)
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where Q ∈ Cm×n is subunitary and z ∈ Cm is arbitrary. In our work [2], we give explicit formulas
for the eigenvectors and eigenvalues of (10).

Theorem 2. Let Q ∈ Cm×n with m > n be subunitary and z ∈ Cm. Let u = QQHz and
v = (I − QQH)z. Assume ∥v∥ ̸= 0 and ∥u∥ ̸= 0. Then the extreme nonzero eigenvalues of
QQH + zzH are

λ =
1

2

(
1 + ∥z∥2 ±

√
1 + ∥z∥4 + 2∥z∥2 − 4∥v∥2

)
(11)

with associated eigenvectors

1

2∥u∥2
(
1− ∥v∥2 + ∥u∥2 ±

√
(∥v∥2 − ∥u∥2 − 1)2 + 4∥u∥2∥v∥2

)
u+ v. (12)

We remark that the expression for the smallest nonzero eigenvalue of QQ∗+zz∗ appears similar to
the lower bound for the smallest eigenvalue of a perturbed Hermitian matrix found in [9]. While the
expressions are similar, we provide an exact expression for the updated extreme nonzero eigenvalues
and associated eigenvectors under the additional assumption that the unperturbed matrix is an
orthogonal projection.
Clearly, Theorem 2 also gives the condition number of the matrix

[
Q z

]
, which gives us a formula

for the condition number of the coefficient matrix in (9). Expressing this condition number formula
in terms of only ∥z∥ allows us to prove that normalizing z in (9) is the optimal scaling for (9). This
optimal scaling is extremely effective at further reducing the condition number of (9) and opens
the door for further analysis.
Results of this analysis include a connection between the underlying dynamical system (1) that
produced the data (2) and the condition number of the coefficient matrix in (9). Specifically, we
show that conditioning is worse when the relative derivative |H ′(σ)/H(σ)| is large, a link that is not
unexpected from the definition of relative condition number for functions. This leads to a method
for preventing overflow in initial computation of γn(σ).
We will expand upon these contributions in the talk, and in addition will showcase the efficacy of
our final algorithm on benchmark examples. Comparisons with the TF-IRKA algorithm [5] show
that obtaining the data H(σ) from time domain data (U,Y) does not degrade the approximation
quality. Also included in these examples will be a demonstration that we can construct H2 optimal
DDROMs from time-domain data obtained from a black-box PDE solver, an exciting indication
that we may not require data explicitly obtained from a discrete-time LTI system as in (1).
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