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Abstract

We study algorithms for approximating the spectral density of a symmetric matrix A ∈
Rn×n that is accessed through matrix-vector products. By combining an existing Chebyshev
polynomial moment matching method with a deflation step that approximately projects off the
largest magnitude eigendirections of A before estimating the spectral density, we give an ϵσℓ(A)
error approximation in the Wasserstein-1 metric using O(ℓ log n+ 1/ϵ) matrix-vector products,
where σℓ(A) is the ℓth largest singular value of A. When A exhibits fast singular value decay,
this can be much stronger than prior work, which gives error ϵσ1(A) using O(1/ϵ) matrix-vector
products. We also show that our bound is nearly tight: Ω(ℓ + 1/ϵ) matrix-vector products are
required to achieve error ϵσℓ(A).

We further show that the popular Stochastic Lanczos Quadrature (SLQ) method matches
the above bound, even though SLQ itself is parameter-free and performs no explicit deflation.
This explains the strong practical performance of SLQ, and motivates a simple variant that
achieves an even tighter error bound. Our error bound for SLQ leverages an analysis that views
it as an implicit polynomial moment matching method, along with recent results on low-rank
approximation with single-vector Krylov methods. We use these results to show that SLQ can
perform implicit deflation as part of moment matching.

1 Introduction

Given a symmetric matrix A ∈ Rn×n with eigenvalues λ1(A), . . . λn(A), the spectral density of A
is defined as:

sA(x) =
1

n

n∑
i=1

δ(x− λi(A)),

where δ(.) is the Dirac delta function. The spectral density sA can be computed directly by
performing a full eigendecomposition of A in O(nω) time, for ω ≈ 2.37 being the exponent of fast
matrix multiplication. However, when A is very large or where A can only be accessed through a
small number of queries, we often want to approximate sA by some s̃A such that s̃A and sA are
close in some metric. Spectral density estimation is applied throughout the sciences [Ski89, SR94,
STBB17, SRS20], network science [FDBV01, EG17, DBB19], machine learning and deep learning
in particular [RL18, PSG18, MM19, GKX19], numerical linear algebra [DNPS16, LXES19], and
beyond. In this work, we focus on the Wasserstein-1 (i.e., earth mover’s) distance, W1(sA, s̃A),
which has been studied in a number of recent works giving formal approximation guarantees for
SDE [CTU21, BKM22, CTU22]. Moreover, A will be accessed only through matrix vector queries
of the form Av for any query vector v. Most state-of-the-art matrix-vector query algorithms for
SDE are based on Krylov subspace methods that fall into two general classes.
Moment Matching. The first class of methods approximates sA by approximating its polynomial
moments. I.e., EsA [p(x)] =

1
n

∑n
i=1 p(λi(A)) = 1

n tr(p(A)), where p is a low-degree polynomial.
We can employ stochastic trace estimation methods like Hutchinson’s method [Gir87, Hut90] to
approximate this trace using just a small number of matrix-vector products with p(A) and in turn
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A, since if p has degree k, a single matrix-vector product with p(A) can be performed using k matrix
vector products with A. After approximating the moments for a set of low-degree polynomials (e.g.,
the first k monomials, or the first k Chebyshev polynomials), we can let s̃A be a distribution that
matches these moments as closely as possible, and thus should closely match sA. Moment matching
methods include the popular Kernel Polynomial Method (KPM) [SR94, Wan94, WWAF06] and
its variants [CPB10, LSY16, BKM22, Che23]. Braverman et al. [BKM22] analyze a Chebyshev
Moment Matching method, which can be thought of as a simple variant of KPM, showing that
the method can compute s̃A satisfying W1(sA, s̃A) ≤ ϵ · ∥A∥2 with probability ≥ 1 − δ using just
O(b/ϵ) matrix vector products, where b = max(1, 1

nϵ2
log2 1

ϵδ log
2 1

ϵ ). Note that b = 1 in the common
case when ϵ = Ω̃(1/

√
n). Here ∥A∥2 denotes the spectral norm of A – i.e., its largest eigenvalue

magnitude. They prove a similar guarantee for KPM itself, but with a worse dependence on ϵ.
Lanczos-Based Methods. This class of methods computes a small number of approximate
eigenvalues of A using the Lanczos method, and lets s̃A be a distribution supported on these
eigenvalues, with appropriately chosen probability mass placed at each. The canonical method of
this form is Stochastic Lanczos Quadrature (SLQ) [CTU21, GM09]. Many other variants have also
been studied. Some place probability mass not just at the approximate eigenvalues, but on Gaussian
or other simple distributions centered at these eigenvalues [LG82, BRP92, LSY16, HHK72]. Chen
et al. [CTU21, CTU22] prove that the Lanczos-based SLQ method gives essentially the same
approximation bound as [BKM22]: error ϵ · ∥A∥2 using O(1/ϵ) matrix-vector products when ϵ =
Ω̃(1/

√
n)2.

2 Our Results

Our main contribution is to show that both moment matching and Lanczos based methods for
SDE can achieve improved bounds on W1(sA, s̃A) that depend on σl+1(A), the (l + 1)st largest
singular value of A for some parameter l, instead of ∥A∥2. For matrices that exhibit spectral
decay and thus have σl+1(A) ≪ σ1(A) = ∥A∥2, our bounds can be much stronger than the
bound W1(sA, s̃A) ≤ ϵ · ∥A∥2 achieved in prior work, which roughly corresponds to estimating each
eigenvalue to average error ϵ · ∥A∥2. We also provide a lower bound showing that our bounds are
near optimal upto some logarithmic factors.

2.1 Improved SDE via Moment Matching with Explicit Deflation

Our first contribution is a modification of the moment matching method of [BKM22] that first
‘deflates’ off any eigenvalue of A with magnitude significantly larger than σl+1(A), before estimating
the spectral density. Eigenvalue deflation is widely applied throughout numerical linear algebra to
problems like linear system solving [BEPW98, FV01, GOSS16, FTU23], trace estimation [GSO17,
Lin17, MMMW21], norm estimation [MNS+18], and beyond [CS97]. Specifically, the method uses
a block Krylov subspace method to first compute highly accurate approximations to the p largest
magnitude eigenvalues of A, for some p ≤ l, along with an orthonormal matrix Z ∈ Rn×p with
columns approximating the corresponding eigenvectors. It uses moment matching to estimate the
spectral density of A projected away from these approximate eigendirections (I−ZZT )A(I−ZZT ),
achieving error ϵσl+1(A) since this matrix has spectral norm bounded by O(σp+1(A)) = O(σl+1(A))
if Z is sufficiently accurate. It then modifies this approximate density to account for the probability

2The notations Õ and Ω̃ means some logarithmic factors are present.
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mass at the top p eigenvalues. While block Krylov methods are well understood for related tasks like
eigenvalue and eigenvector computation [Par98, Tro18], low-rank approximation [HMT11, MM15],
singular value approximation [MM15, MNS+18, BN23], linear system solving [LSY98, Saa03], our
work requires a careful analysis of eigenvalue/eigenvector approximation with these methods that
may be of independent interest. Overall, the above approach gives the following result:

Theorem 1 (SDE with Explicit Deflation). For any ϵ ∈ (0, 1), l ∈ [n], and any constants c1, c2 >
0, Algorithm 1 of [BJM+24] performs O

(
l log n+ b

ϵ

)
matrix-vector products with A where b =

max
(
1, 1

nϵ2
log2 n

ϵ log
2 1

ϵ

)
and computes a probability density function s̃A such that, with probability

at least 1− 1
nc1 ,

W1(sA, s̃A) ≤ ϵ · σl+1(A) +
∥A∥2
nc2

.

The additive error ∥A∥2
nc2 can be thought of as negligible – comparable e.g., to round-off error when

directly computing sA using a full eigendecomposition in finite precision arithmetic [BGVKS22].
We further show that our algorithm is optimal amongst all matrix-vector query algorithms, up to
logarithmic factors and the negligible additive error term. Our proof leverages an existing lower
bound for distinguishing Wishart matrices of different ranks, previously used to give matrix-vector
query lower bounds for the closely related problem of eigenvalue estimation [SW23]. Formally:

Theorem 2 (SDE Lower Bound). Any (possibly randomized) algorithm that given symmetric A ∈
Rn×n outputs s̃A such that, with probability at least 1/2, W1(sA, s̃A) ≤ ϵσl+1(A) for ϵ ∈ (0, 1) and
l ∈ [n] must make Ω

(
l + 1

ϵ

)
(possibly adaptively chosen) matrix-vector queries to A.

2.2 Implicit Deflation Bounds for Stochastic Lanczos Quadrature

Our second contribution is to show that the popular Stochastic Lanczos Quadrature (SLQ) method
for SDE [LSY16, CTU21] nearly matches the improved error bound of Theorem 1 for any choice
of l, even though SLQ is ‘parameter-free’ and performs no explicit deflation step. This result helps
to justify the strong practical performance of SLQ and the observed ‘spectrum adaptive’ nature of
this method as compared to standard moment matching-based methods like KPM [CTU21].
A key idea used to achieve this bound is to view SLQ as an implicit moment matching method
as in [CTU21, CTU22], and to analyze it similarly to KPM and other explicit moment matching
methods. We combine this analysis approach with recent work on low-rank approximation with
single-vector (i.e., non-block) Krylov methods [MMM24] to show that SLQ can perform ‘implicit
deflation’ as part of moment matching to achieve the improved error bound. Formally, we have:

Theorem 3 (SDE with SLQ). Let l ∈ [n], and ϵ, δ ∈ (0, 1). Let gmin = mini∈[l]
σi(A)−σi+1(A)

σi(A) and
κ = ∥A∥2

σl+1(A) . SLQ run for m = O(l log 1
gmin

+ 1
ϵ log

n·κ
δ ) iterations performs m matrix vector products

with A and outputs a probability density function s̃A such that, with probability at least 1− δ,

W1(sA, s̃A) ≤ Õ

(
ϵ · σl+1(A) +

σl+1(A)√
n

+
l

n
∥A∥2

)
.

Theorem 3 essentially matches our result for moment matching with explicit deflation (Theorem
1) up to some small caveats, discussed below. First, the number of matrix vector products has
a logarithmic dependence on the minimum gap gmin amongst the top l singular values as well as
the condition number κ = ∥A∥2

σl+1(A) . The dependence on the minimum gap is inherent, as non-block
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Krylov methods like SLQ require a dependence on gmin in order to perform deflation/low-rank
approximation [MMM24]. We note that, in practice, gmin is generally not too small. Also, by
adding a random perturbation to A with spectral norm bounded by ∥A∥2

poly(n) , one can ensure that
both gmin ≥ 1

poly(n) and κ ≤ poly(n) with high probability, and thus replace the O(l log 1
gmin

) term
with an O(l log n) and the O( log(nκ)ϵ ) term with O( lognϵ ), matching Theorem 1. See e.g., [MMM24].

Second, Theorem 3 has an additional error term of size Õ(σl+1(A)/
√
n). This term is lower order

whenever ϵ = Ω̃(1/
√
n). Further, we believe that this term, along with the dependence on gmin can

be removed by using a variant on SLQ that is popular in practice, where the densities output by
multiple independent runs of the method are averaged together to produce s̃(A).
Finally, Theorem 3 has an additional error term of size Õ(∥A∥2 · l/n). In the natural case when we
run for m ≪ n iterations and thus l ≪ n, this term will be small. However, it cannot be avoided:
even for a matrix with rank ≤ l with well-separated eigenvalues, while the Lanczos method will
converge to near-exact approximations to these eigenvalues (with error bounded by ∥A∥2

nc ), the
probability distribution output by SLQ will not place mass exactly 1/n at these approximate
eigenvalues and thus will not achieve SDE error O(∥A∥2

nc ).
This limitation motivates us to introduce a simple variant of SLQ, which we call variance reduced
SLQ, which places mass exactly 1/n at any eigenvalue computed by Lanczos that has converged to
sufficiently small error. This variant gives the following stronger error bound:

Theorem 4 (SDE with Variance Reduced SLQ). Let l ∈ [n], and ϵ, δ ∈ (0, 1). Let gmin =

mini∈[l]
σi(A)−σi+1(A)

σi(A) and κ = ∥A∥2
σl+1(A) . Algorithm 5 of [BJM+24] run for m = O(l log 1

gmin
+

1
ϵ log

n·κ
δ ) iterations performs m matrix vector products with A and outputs a probability density

function s̃A such that, with probability at least 1− δ, for some fixed constant c > 0,

W1(sA, s̃A) ≤ Õ

(
ϵ · σl+1(A) +

σl+1(A)√
n

+
l

n
σl+1(A)

)
+

∥A∥2
nc

.

3 Future Work

There are a number of directions inspired by our work which can be pursued in the future.
Lanczos based Matrix Function Approximation. Variants of SLQ and Lanczos have been
used to obtain algorithms for estimating general functions of the trace of A, tr(f(A)) [UCS17,
CTU22, CH23]. The Lanczos method itself can approximate different matrix functions like rational
functions very accurately [ACG+24]. Our deflation based analysis, particularly that of the variance
reduced SLQ, could be used to give improved spectrum adaptive bounds for all these methods.
Numerical stability. The Lanczos algorithm is known to suffer from numerical stability issues
when implemented in finite precision arithmetic [Che24]. A more careful analysis of how the
algorithms perform under finite precision arithmetic will be interesting. However, we note that our
experiments (Section 6 of [BJM+24]) show that our algorithms work pretty well in practice.
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