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Abstract

Mixed-precision hardware has recently become commercially available, and more than 25% of the
supercomputers in the TOP500 list now have mixed-precision capabilities. Using lower preci-
sion in algorithms can be beneficial in terms of reducing both computation and communication
costs. According to the recently developed mixed-precision benchmark, HPL-MxP, multiple super-
computers today already exceed exascale (10'® floating-point operations per second) performance
through the use of mixed-precision computations. Many current efforts are focused on developing
mixed-precision numerical linear algebra algorithms, which will lead to speedups in real applica-
tions. These new algorithms are increasingly being implemented in libraries, such as the MAGMA
library.

Motivated by this, the aim of this talk is to discuss recent advances in developing and analyzing
mixed-precision variants of iterative methods. Iterative methods for solving linear systems and
least squares problems are useful in practice when the coefficient matrix is large and sparse or not
explicitly stored and /or when accuracy less than machine precision is sufficient. An iterative method
starts with an initial guess and then iteratively improves the solution to the desired accuracy. One
can use stationary methods, Krylov subspace methods, or some hybrid approach, depending on the
problem. We focus on hybrid methods, where we use a Krylov subspace method as an inner solver
of a variant of Newton’s approach (stationary method), such as RQI and iterative refinement.

Iterative methods can be used to improve the accuracy of solutions to least squares (LS) problems
ming||b — Azx||2, where A € R™*". Using the QR factorization A = [Q1 Q2][R 0], the solution
to the LS problem is given by # = U~1Q¥b and the residual by r = ||b — Ax|]2 = [|Q1b||2. The LS
problem can also be solved via the normal equations, AT Az = A”b, which are equivalent to the

augmented system [1]
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If m > n, then the system is called overdetermined, and if m < n, it is underdetermined. Weighted
LS (WLS) is used when there are discrepant rows in A. In this case, weights can be assigned to these
rows to minimize discrepancy. In classical least squares, there is an assumption that perturbations
are confined to the vector b. This is not necessarily realistic in practice. If A and b may both be

perturbed (fl, b, respectively) so that b is in column space of A, this problem is called total LS
(TLS).

Krylov subspace methods work by selecting approximate solutions from a Krylov subspace. The
search space is formed via nested Krylov subspaces, and the solution is obtained from a sequence
of projections onto the search space. Although these solvers can be fast and/or stable, for large
problems, they may not be memory efficient and slow down performance. To speed up and exploit
parallelism, techniques such as mixed-precision can be used.

Error analysis is important for determining how rounding errors propagate in computations and
identifying potential sources of amplification. For a function f : R™ — R™, the backward error in
the approximation y to f(x) is the smallest Az such that y = f(z + Az), i.e., [10]

n(y) = min{e : y = f(z + Ax), [[Az|| < eflz]|}.



Backward error analysis [9] aims to derive a bound on the backward error. If the backward error
is small, then we say the algorithm is backward stable. The forward error measures the difference
between the computed and the exact solution. As defined in [10], the relative forward error of
y ~ f(z) can bounded in terms of the relative backward error 7(y) by
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where

cond(f,z) = limesy  sup I f(z+ Az) — f(z)]
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is the condition number, which measures the sensitivity of the solution to small perturbations in
the input data.

Mixed-precision Rayleigh quotient iteration for total least squares problems

We first focus on the use of Rayleigh quotient iteration (RQI) to solve the TLS problem, which is
the approach advocated in [2] for large-scale problems, and introduce a mixed-precision variant of
the RQI-PCGTLS algorithm (RQI-PCGTLS-MP) [8]. This approach solves the eigenvalue problem
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to find « = zprs, where A = 02, and 02, is the smallest singular value of [4,b]. Our approach
potentially decreases the computational cost of RQI-PCGTLS by using up to three different pre-
cisions in the algorithm. Moreover, to enable the use of lower precision for more ill-conditioned
systems, we use the R-factor from the Householder QR factorization of A instead of the Cholesky
factorization of AT A within RQI-PCGTLS-MP. We discuss the convergence and accuracy of our
algorithm and derive two theoretical constraints on the precision that can be used for the construc-
tion of the preconditioner within the inner solver. To evaluate to what extent the computational
cost can be reduced by using the mixed-precision variant with Householder QR factorization, we
construct a performance model. Our numerical experiments and performance model show that

one can get up to 4x speedup while keeping the working precision accuracy when fpl6 is used in
computing QR factors.

GMRES-based iterative refinement and its variants

Another variant of Newton’s method is the iterative refinement (IR) algorithm. As RQI, IR al-
gorithms require a linear solver in each outer iteration. The standard IR (we refer to as SIR)
algorithm in [9] first computes the initial approximation using Gaussian elimination with partial
pivoting and uses approximate LU factors of A to solve for the correction term which then refines
the current solution. To increase the range of problems that can be solved with IR, a Krylov
subspace method, such as preconditioned GMRES, can be used to solve the linear systems as in
RQI-PCGTLS; this three-precision approach is called GMRES-IR [3]. GMRES-IR uses precisions
with unit round-off u; for LU factorization, u, for residual computation, and u for storing data and
solution. For stability analysis of methods such as IR variants, we can derive forward and error
bounds under a constraint on the conditioning of the coefficient matrix, x(A4). For a non-singular
square matrix, the condition number is defined as r,(A) = || Al|,[|A7Y|, with the associated norm



p. As long as koo(A) < u QUJTI and u, = u?, GMRES-IR provides accurate solutions with the
forward and (normwise) backward errors
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respectively, while SIR is guaranteed to have this forward error only if Ko (A4) < u;l and u, = u?.

GMRES-IR can be much more expensive than SIR, depending on the number of iterations per-
formed. One way to speed up the convergence of the GMRES solver is using recycling. In an effort
to reduce the overall computational cost of the GMRES solves within GMRES-IR, we introduce
a recycled GMRES-based iterative refinement algorithm called RGMRES-IR [6]. The algorithm
starts with computing the LU factors of A and computing the initial approximate solution in the
same manner as GMRES-IR. Instead of preconditioned GMRES, however, the algorithm uses pre-
conditioned GCRO-DR to solve the correction equation. In the RGMRES-IR algorithm, as in
GMRES-IR, we use three precisions. Numerical experiments show that RGMRES-IR. decreases the
total GMRES iterations performed, especially when the matrix is badly conditioned. Even when
GMRES-IR cannot converge, we observe that our variant can still converge.

Overdetermined standard least squares problems can be solved by using mixed-precision within
the iterative refinement approach. It has been shown that mixed-precision GMRES-IR can also be
used, in an approach termed GMRES-LSIR [4]. GMRES-LSIR solves the augmented system using
GMRES preconditioned by a preconditioner M computed using the QR factors of A:
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where A = QU is the thin QR factorization of A. As long as keo(A4) < ufl/zujil, and assuming
u, = u?, GMRES-LSIR provides O(u) backward and forward error. Furthermore, using the left
preconditioner M, the conditioning of the preconditioned augmented matrix can be bounded by
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and c is a small constant. In practice, we often encounter types of least squares problems beyond
standard least squares, including the WLS problem min,, || D'/2(b— Az)||z, where D'/2 is a diagonal
matrix of weights, which is possibly ill-conditioned. WLS problems can be solved via the normal
equations or the corresponding augmented system,
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respectively, where y = D(b — Az), « is the scaling factor for stability. We present the FGMRES-
WLSIR algorithm, a variant of GMRES-LSIR for solving WLS problems using flexible GMRES
(FGMRES), and discuss and analyze two different preconditioners [5]; a left preconditioner and a
block diagonal split preconditioner,
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respectively, where C~a'ATDA is a symmetric positive definite approximation to the Schur
complement.



Multistage mixed-precision iterative refinement

In some cases, SIR can fail depending on the conditioning of the matrix and the precisions used.
However, using GMRES-IR can be more expensive since one GMRES-IR iteration is more ex-
pensive than one SIR iteration. To benefit from both approaches and their variants, we propose
a multistage IR approach (MSIR) to reduce the computation cost while improving applicability
[7]. Our approach automatically switches between solvers and precisions if slow convergence (of
the refinement scheme itself or of the inner GMRES solves) is detected using stopping criteria.
With MSIR we attempt to use “stronger” solvers before resorting to increasing the precision of the
factorization, and when executing a GMRES-based refinement algorithm, we modify the stopping
criteria to also restrict the number of GMRES iterations per refinement step. Our experiments
show that since the algorithmic variants often outperform what is dictated by the theoretical con-
dition number constraints there can be an advantage to first trying other solvers before resorting
to increasing the precision and refactorizing.
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