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Abstract

We consider the task of solving a large system of linear equations Ax = b, where for simplicity, we
will assume that A is real, square, and full-rank. Iterative algorithms, such as LSQR, Conjugate
Gradient and other Krylov subspace methods, are a powerful tool for solving such linear systems.
Yet, the convergence properties of these methods are highly dependent on the singular value struc-
ture of the matrix A, and characterizing these properties effectively requires going beyond the usual
notion of condition number. In this talk, we will consider this problem in the context of linear sys-
tems whose singular values exhibit a low-rank structure, in the sense that A can be decomposed
into a low-rank ill-conditioned matrix (the “signal”) and a full-rank well-conditioned matrix (the
“noise”). Such linear systems are motivated by a range of problem settings, including in statistics,
machine learning, and optimization, where the “signal” is often low-rank due to inherent struc-
ture of the data, while the “noise” may be coming from measurement error, data transformations,
or an explicit regularizer imposed by the user. We will show how randomized sketching tech-
niques, including our recent works on randomized preconditioning [DMY25] and stochastic solvers
[DR24, DY24, DLNR24], can be used to exploit this low-rank structure in order to accelerate linear
system solving in ways that go beyond what is possible with Krylov subspace methods.

Linear systems with low-rank structure. Consider the following linear system task:
Solve Az =0b, given AeR™™ and beR",

where A is a full-rank matrix with singular values o1 > 09 > ... > 0,. For a given low-rank
parameter k € {1,...,n}, we will allow the top-k part of the singular values to be very ill-conditioned,
but assume that the tail is moderately well-conditioned, as measured by ky = op41/0,. For
example, if the matrix A is explicitly regularized, e.g., A = B + A}, as in ridge regression [AM15]
or cubic-regularized Newton’s method [NPO06], then k£ may correspond to the number of singular
values above the A threshold. Similar regularization effect occurs when A is distorted by isotropic
noise, A = B+ 0N, e.g., where N is Subgaussian [JohO1], or it is the error from stochastic rounding
[DBM*24]. Also, A may exhibit a power law singular value distribution (o; o< i77), e.g., due to a
data transformation with the Matérn kernel function [RWO06]. Here, different values of k capture
different signal-to-noise trade-offs. Our goal is to describe the convergence and computational cost
of iterative algorithms for solving Az = b in terms of the parameters n, k, and k;. One can also
consider the sparsity of A, but for simplicity, we will focus on the dense setting.

Effectiveness and limitations of Krylov subspace methods. A careful analysis of Krylov
subspace methods such as LSQR and CG for solving linear systems with low-rank structure [ALS6]
shows that they need k iterations to capture the top-k singular vectors, and then O(ky log(1/e))
iterations to converge at a rate that depends only on xy, (with sy replaced by /kj when A is positive
definite). Thus, for a dense A, before reaching a fast convergence rate of O(n?sy, log 1/€) operations,
Krylov methods require an initial O(n2k) cost (corresponding to roughly k matrix-vector products)
to capture the low-rank structure of A, which is expensive for large k. This n2k bottleneck can
be established as a lower bound not just for Krylov methods but for any algorithms that access A
only through matrix-vector products [DLNR24].



Given the above problem formulation and discussion, the central question of this talk is:

Can the n’k bottleneck in solving linear systems with low-rank structure be overcome,
when given direct access to A and allowing randomization?

Randomized preconditioning via sparse sketching. Randomized sketching offers a powerful
set of tools for accelerating linear solvers. While these approaches have traditionally focused on very
tall least squares problems [AMT10], linear systems with low-rank structure offer another setting
where sketching can be beneficial. Such an algorithm starts by applying a random matrix S € R%*"
(e.g., Gaussian) to the matrix A, producing a smaller sketch A = SA € R**", where s < n is the
sketch size. This sketch can now be used to construct an approximate low-rank decomposition of
A, e.g., by orthonormalizing the columns of AT to obtain an n x s matrix Q and projecting A
onto the subspace defined by those columns, 4 = AQQT ~ A [HMT11]. The intuition here is that
A approximates A reasonably well in the top-k singular directions as long as the sketch size s is
sufficiently larger than k, and this approximation can be further boosted via subspace iteration.

If implemented naively, sketching does not appear to overcome the O(n%k) computational barrier
exhibited by Krylov methods, due to three bottlenecks: (1) applying the sketching matrix S,
(2) projecting via the orthogonal matrix @, and (3) performing subspace iteration. Each of these
require at least k matrix-vector products to produce a decent preconditioner for a linear system
with rank k structure. However, given direct access to A, the sketching cost (bottleneck 1) can
be reduced by using fast sketching methods, e.g., by making S extremely sparse, which is known
to retain similar guarantees as a Gaussian matrix. Moreover, recent works have shown that a
careful construction of the preconditioner can avoid the full projection step (bottleneck 2): in the
positive definite case, by relying on Nystrom approximations [FTU23], and in the general case,
by using an inner solver to construct the preconditioner implicitly [DMY25]. In the latter work,
we showed that this approach can be used to solve a linear system in O(n%k,\/n/klog1/e + k%)
operations (up to minor logarithmic factors), where the term y/n/k comes as a trade-off from
omitting subspace iteration (bottleneck 3). When k is sufficiently large and kj small enough, this
overcomes the n?k barrier.

Stochastic solvers via Sketch-and-Project. Another class of methods that use randomized
sketching and/or sub-sampling to go beyond matrix-vector products are stochastic iterative solvers
such as randomized Kaczmarz and coordinate descent, among others. Viewed in the context of
sketching, many of these methods can be unified under the framework of Sketch-and-Project [GR15].
Here, we consider a solver that updates an iterate x; by repeatedly sketching the system Ax = b
and projecting x; onto the solutions of the sketched system:

Tyl = arg IrrelIer}l |y — z|| subject to SAxz = Sb.

While stochastic solvers have traditionally been considered effective primarily in specialized settings
where we may not be able to perform full matrix-vector products with A (e.g., due to memory or
bandwidth constraints), we have shown in recent works that these methods can also be particularly
effective for linear systems with low-rank structure. Here, the intuition is that the sketched system
S Ax = Sb retains the information about the top-k singular directions of A, which gives the Sketch-
and-Project solver a convergence rate akin to being preconditioned with a rank k approximation
[DR24]. We have adapted this approach to a simple Randomized Block Kaczmarz method [DY24],
as well as a variant with Nesterov’s acceleration [DLNR24], showing that these algorithms can solve
a linear system in O((n? 4+ nk?)k; log 1/€) operations. This recovers the fast Krylov convergence of
O(n?kylog 1/€) operations for up to k = O(y/n), while entirely avoiding the n?k bottleneck.
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