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Abstract

The randomized SVD (rSVD) is excellent at constructing a low-rank approximation to a matrix
with rapidly decaying singular values, and its theoretical behavior as such was thoroughly explained
in [6]. However, the singular values and singular subspaces of a good low-rank approximation may
not accurately approximate the true singular values and singular subspaces, even with oversampling.
The following example illustrates the problem.
Let A be a 1000×1000 matrix, where five of its eigenvalues are 1 and the remaining 995 eigenvalues
are 0.05. We aim to estimate the 5-dimensional dominant eigenspace corresponding to the 1’s
using the rSVD with standard Gaussian test vectors and oversampling by 10. A simple numerical
experiment returns the following results, over 1000 iterations of the rSVD:

1. Average relative low-rank error in the Frobenius norm ∥A−Ã∥F
∥A−A5∥F : 1.176969

2. Average relative low-rank error in the spectral norm ∥A−Ã∥2
∥A−A5∥2 : 12.152447

3. Average maximum relative error for eigenvalues max
j=1,...,5

|σj−σ̃j |
|σj | : 0.209691

4. Average principal angle error for dominant eigenspace ∥Θ(U5, Ũ5)∥2: 0.654832

Here, Ã is the rank-5 truncated approximant generated by the rSVD, A5 is the best rank-5 approxi-
mant to A (that is, the diagonal matrix with five 1’s in the top left corner), σj , σ̃j are the eigenvalues
of A, Ã respectively, and U5, Ũ5 are the 5-dimensional dominant eigenspaces of A, Ã respectively.
Observe that Ã is only a small factor away from being the optimal rank-5 approximant to A in
the Frobenius norm, but it is much further from optimality in the spectral norm. Additionally,
the rSVD has a hard time distinguishing between the eigenvalue 1 and the eigenvalue 0.1, and the
rSVD’s estimate for the dominant eigenspace is off by nearly 40 degrees, for the largest principal
angle between the subspaces, on average. In short, the rSVD fails to be an SVD, even though it
gives a good low-rank approximation in the Frobenius norm.
Therefore, we ask: for what matrices A does the rSVD actually compute an accurate SVD? We
approach the question by considering how well the rSVD approximates the kth dominant singular
subspaces (indeed, if the rSVD manages to accurately capture the dominant singular subspaces,
then it must be accurate in the singular values as well [7]). This problem has received considerable
attention over the past decade, especially through the lens of perturbation theory. The Davis–
Kahan theorem, and its generalization by Wedin to nonsymmetric matrices, provides bounds,
dependent on the size of the singular value gap between σk and σk+1, on the angular change of
eigenvectors under a deterministic perturbation of a matrix. Building on these two early results,
gap-dependent bounds on the accuracy of singular subspace approximations by projection-based
methods, such as the rSVD, were derived for both deterministic and random settings by [5, 13, 14,
15]. Gap-independent bounds have also appeared in the works of [2, 9, 12]. While such bounds tell
us when we expect to have a hard time determining the singular subspaces of a given matrix, they
may fail to tell us whether a matrix is in fact conducive to singular subspace approximation. In
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fact, we observe in practice matrices with small or nonexistent singular value gaps whose singular
subspaces are nevertheless well-approximated by the rSVD with high probability.
Our contribution is an exact, relatively straightforward formula for the cumulative distribution
function of the largest principal angle between the true and the approximate dominant singular
subspace, when using the rSVD with Gaussian test vectors. Our formula encapsulates the advan-
tages of previous works in that (a) it is computable, interpretable, and a priori in the sense that it
is space-agnostic, meaning it does not depend on prior knowledge of the singular subspaces; (b) it
applies for any power of subspace iteration, with any amount of oversampling (including none at
all); and (c) it can be used to derive existing bounds for the largest principal angle. Since our result
is exact, it is certainly gap-independent. More importantly, it helps explain why a large singular
value gap improves subspace estimates, but it also explains when and why the rSVD succeeds at
singular subspace approximation even when the singular value gap is small. We show that the
gap-dependent bounds of [15] assume the worst-case scenario given a gap, and we show that that
worst-case scenario is when the singular values of A are σ1 = · · · = σk > σk+1 = · · · = σn—the
dominant singular values are as small as possible, while the tail is as large as possible.
To be precise, let N ≥ n and fix the target rank k ≥ 1 and oversampling p ≥ 0 such that k+p < n

2 .
Let M ∈ RN×n and let Σ1,Σ2 be k × k and (n − k) × (n − k) diagonal matrices of the dominant
and tail singular values of M , respectively. If θ1 denotes the largest principal angle between the
kth dominant left singular subspace of M and the (k+ p)-dimensional column space of MΩ, where
Ω is an n × (k + p) standard Gaussian matrix, then the cumulative distribution function of θ1 is
given, for 0 ≤ θ ≤ π

2 , by

P(θ1 < θ) = E
[
det(S(θ,Σ, Q,H1, Q1))

n−k−p
2 2F1(

−p+1
2 , n−k−p

2 ; −p+1
2 ; Ik − S(θ,Σ, Q,H1, Q1))

]
where

1. S(θ,Σ, Q,H1, Q1) is the k × k matrix

sin2(θ)Σ1

(
sin2(θ)Σ2

1 + cos2(θ)QQ′
1(H

′
1Σ

−2
2 H1)

−1Q1Q
′)−1

Σ1;

2. Q, H1, and Q1 are random matrices which are respectively the Q factors in the QR decom-
position of a k× k standard Gaussian matrix, an (n− k)× (k+ p) matrix whose columns are
independently sampled from the multivariate Gaussian N (0,Σ2

2), and a (k + p) × k matrix
whose columns are independently sampled from N (0,H⊤

1 Σ−2
2 H1); and

3. 2F1(a, b; c;X) is the Gaussian hypergeometric function of matrix argument.

All of these quantities are computable given the singular values of M ; the expectation can be com-
puted by Monte–Carlo simulation, while the hypergeometric function can be evaluated extremely
quickly via [8]. Numerical experiments demonstrate excellent agreement between our formula and
empirical observations.
The primary tools used to derive our formula for the cumulative distribution function come from
the statistical side of random matrix theory [4, 11]. Our result and proof generalizes those of [1, 3],
the latter of which plays a major role in the theoretical guarantees of [6, 15]. We expect that our
formula and techniques can be used to explain, in more detail, empirically observed phenomena in
randomized methods for computing SVDs, including randomized Krylov iteration. We also expect
that our formula can be used to analyze the possibility of using the rSVD as a test for low-rank
structure, which has come up in [10, 16], or as a rank revealer. Finally, we hope to use our result
to distinguish the classes of matrices for which randomized subspace methods succeed or fail at
different tasks, including singular value and singular subspace approximation.
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