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Abstract

Neural networks provide a powerful tool for machine learning and other data science techniques.
They can also serve as new ways for mathematical and numerical tasks such as function approxi-
mations and PDE solutions. Although there have been significant developments in neural network
methods, the analysis of relevant matrices and the design of relevant fast and stable matrix com-
putation techniques are typically overlooked.
In fact, neural network methods provide highly interesting new opportunities to perform matrix
analysis and design matrix algorithms that can benefit modern data analysis and machine learning.
Examples of scenarios where large and challenging matrices arise include the following.

• In neural network least-squares approximations of functions, large mass matrices and Hes-
sian matrices may be constructed from activation functions such as ReLU functions as basis
functions.

• Sparse structured matrices have been often used in the design of effective neural networks
and efficient training algorithms (and a simple example is the use of sparse Toeplitz matrices
as weight matrices in some neural networks).

• In optimization and training algorithms such as ADAM and BFGS, the underlying matrices
are often closely related to certain preconditioners.

In this talk, we aim to bridge the gap between some neural network methods and fast and reliable
matrix computations. We present rigorous analysis for some of these matrices and show two aspects.

• Why some of these matrices pose significant challenges (say, in the conditioning, spectrum
distribution, and frequency modes) for matrix computations.

• Why it is feasible to design new fast and reliable solvers for these problems based on certain
underlying structures.

In particular, consider the approximation of a function u : Ω(⊂ Rd) → R by

v =
n∑

i=1

ciσ(w
T
i x+ bi), x ∈ Ω,

where wi’s are weight vectors, bi’s are biases, ci’s are scalar coefficients, and σ(t) = max{t, 0} is the
ReLU function. Let W = (w1, . . . ,wn), b = (b1, . . . , bn)

T , and c = (c1, . . . , cn). The least-squares
approximation of u by v solves the following optimization problem:

min
W,b,c

J with J := ⟨v − u, v − u⟩ = 1

2

∫
Ω
(v − u)2dx.

By viewing c as a set of linear parameters and {W,b} as nonlinear parameters, we can look at the
gradient of J with respect to one of the two sets of parameters with the other set fixed [1]. Setting
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the gradients to be 0 leads to a linear system for the linear parameters and a nonlinear system
for the nonlinear parameters. The former system has a mass matrix Ã as the coefficient matrix.
The solution of the latter system with Newton or Gauss-Newton methods lead to linear systems
involving a Hessian or Gauss-Newton matrix H̃. In a highly simplified setting, Ã and H̃ may be
related to the following matrix forms, respectively:

A = (Aij)n×n, Aij =
⟨
σ(wT

i x+ bi), σ(w
T
j x+ bj

⟩
,

H = (Hij)n×n, Hij =
⟨
h(wT

i x+ bi), h(w
T
j x+ bj

⟩
,

where h(t) = σ′(t) =

{
1, t > 0,

0, t < 0.

Some interesting matrix analysis may be performed for A and H. For example, we can show the
following aspects.

• A and H are positive definite (with modest assumptions) but are highly ill conditioned due to
the fast decay of the eigenvalues. For instance, even in the 1D case with uniform breakpoints
that define the ReLU basis functions, A has 2-norm condition number proportional to 1

n4 .

• The behaviors of the low and high frequency modes further make them challenging for iterative
solvers.

• Some preconditioning strategies may be designed based on basis function modifications, but
the effectiveness is limited.

• On the other hand, the matrices have nice inherent structures. In particular, relevant off-
diagonal blocks of the matrices are low rank (the 1D case) or numerically low rank (with
appropriate conditions). These structures make it feasible to design fast and stable direct
solvers for the relevant linear systems.

These problems thus give a nice opportunity to apply structured matrix methods. This also shows
how advanced matrix analysis may benefit modern neural network methods. The talk includes
joint with Z. Cai, T. Ding, M. Liu, and X. Liu.
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