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Abstract

Reconstructing high-quality images with sharp edges requires edge-preserving regularization oper-
ators. Using a general ℓq-norm on the gradient of the image is a common approach. For implemen-
tation purposes, the ℓq-norm regularization term is typically replaced with a sequence of ℓ2-norm
weighted gradient terms with the weights determined from the current solution estimate. While (hy-
brid) Krylov subspace methods can be employed on this sequence, it would require generating a new
Krylov subspace for every update of the regularization operator. The majorization-minimization
generalized Krylov subspace method (MM-GKS) addresses this disadvantage by combining the
updating of the regularization operator with generalized Krylov subspaces (GKS). After projecting
the problem onto a lower dimensional subspace - one that expands each iteration - the regulariza-
tion parameter is selected for the projected problem. Basis expansion continues until a sufficiently
accurate solution is found. Unfortunately, for large-scale problems that require many iterations
to converge, storage and the cost of repeated orthogonalization present overwhelming memory
requirements and computational costs.
We present a variant of MM-GKS that provably converges to the minimum of the smoothed func-
tional even if the search space dimension remains very small. This substantially improves theoretical
results for MM-GKS where the convergence proof relies on (eventually) spanning the full problem
space. Using this result, we develop a new method that solves the minimization/imaging problem
by alternatingly compressing and expanding the search space while maintaining strict monotonic
convergence. Our method can solve large-scale problems efficiently both in terms of computational
complexity and memory requirements. In the compression phase, we select a subspace of small
dimension that is considered the most “important” for convergence by one of four compression
strategies. We further generalize our proposed method to handle streaming problems where the
data is either not all available simultaneously or the size of the problem demands it be treated as
such. We demonstrate the utility of our approach on several image reconstruction and restoration
problems.
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